|
@@ -62,95 +62,6 @@ IGL_INLINE void igl::intrinsic_delaunay_triangulation(
|
|
typedef typename Derivedl::Scalar Scalar;
|
|
typedef typename Derivedl::Scalar Scalar;
|
|
const Index num_faces = F.rows();
|
|
const Index num_faces = F.rows();
|
|
|
|
|
|
- std::vector<Index> face_queue;
|
|
|
|
- face_queue.reserve(32);
|
|
|
|
- std::vector<Index> pushed;
|
|
|
|
- // 32 is faster than 8
|
|
|
|
- pushed.reserve(32);
|
|
|
|
-
|
|
|
|
- // Does edge (a,b) exist in the edges of all faces incident on
|
|
|
|
- // existing unique edge uei.
|
|
|
|
- //
|
|
|
|
- // Inputs:
|
|
|
|
- // a 1st end-point of query edge
|
|
|
|
- // b 2nd end-point of query edge
|
|
|
|
- // uei index into uE/uE2E of unique edge
|
|
|
|
- // uE2E map from unique edges to half-edges (see unique_edge_map)
|
|
|
|
- // E #F*3 by 2 list of half-edges
|
|
|
|
- //
|
|
|
|
- const auto edge_exists_near =
|
|
|
|
- [&](const Index & a,const Index & b,const Index & uei)->bool
|
|
|
|
- {
|
|
|
|
- face_queue.clear();
|
|
|
|
- pushed.clear();
|
|
|
|
- assert(a!=b);
|
|
|
|
- // Not handling case where (a,b) is edge of face incident on uei
|
|
|
|
- // since this can't happen for edge-flipping.
|
|
|
|
- assert(a!=uE(uei,0));
|
|
|
|
- assert(a!=uE(uei,1));
|
|
|
|
- assert(b!=uE(uei,0));
|
|
|
|
- assert(b!=uE(uei,1));
|
|
|
|
- // starting with the (2) faces incident on e, consider all faces
|
|
|
|
- // incident on edges containing either a or b.
|
|
|
|
- //
|
|
|
|
- // face_queue Queue containing faces incident on exactly one of a/b
|
|
|
|
- // Using a vector seems mildly faster
|
|
|
|
- const Index f1 = uE2E[uei][0]%num_faces;
|
|
|
|
- const Index f2 = uE2E[uei][1]%num_faces;
|
|
|
|
- // map is faster than unordered_map here, and vector + brute force
|
|
|
|
- // is_member check is even faster
|
|
|
|
- face_queue.push_back(f1);
|
|
|
|
- pushed.push_back(f1);
|
|
|
|
- face_queue.push_back(f2);
|
|
|
|
- pushed.push_back(f2);
|
|
|
|
- while(!face_queue.empty())
|
|
|
|
- {
|
|
|
|
- const Index f = face_queue.back();
|
|
|
|
- face_queue.pop_back();
|
|
|
|
- // consider each edge of this face
|
|
|
|
- for(int c = 0;c<3;c++)
|
|
|
|
- {
|
|
|
|
- // Unique edge id
|
|
|
|
- const Index uec = EMAP(c*num_faces+f);
|
|
|
|
- const Index s = uE(uec,0);
|
|
|
|
- const Index d = uE(uec,1);
|
|
|
|
- const bool ona = s == a || d == a;
|
|
|
|
- const bool onb = s == b || d == b;
|
|
|
|
- // Is this the edge we're looking for?
|
|
|
|
- if(ona && onb)
|
|
|
|
- {
|
|
|
|
- return true;
|
|
|
|
- }
|
|
|
|
- // not incident on either?
|
|
|
|
- if(!ona && !onb)
|
|
|
|
- {
|
|
|
|
- continue;
|
|
|
|
- }
|
|
|
|
- // loop over all incident half-edges
|
|
|
|
- for(const auto & he : uE2E[uec])
|
|
|
|
- {
|
|
|
|
- // face of this he
|
|
|
|
- const Index fhe = he%num_faces;
|
|
|
|
- bool already_pushed = false;
|
|
|
|
- for(const auto & fp : pushed)
|
|
|
|
- {
|
|
|
|
- if(fp == fhe)
|
|
|
|
- {
|
|
|
|
- already_pushed = true;
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- if(!already_pushed)
|
|
|
|
- {
|
|
|
|
- pushed.push_back(fhe);
|
|
|
|
- face_queue.push_back(fhe);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- return false;
|
|
|
|
- };
|
|
|
|
-
|
|
|
|
// Vector is faster than queue...
|
|
// Vector is faster than queue...
|
|
std::vector<Index> Q;
|
|
std::vector<Index> Q;
|
|
Q.reserve(uE2E.size());
|
|
Q.reserve(uE2E.size());
|
|
@@ -233,58 +144,43 @@ IGL_INLINE void igl::intrinsic_delaunay_triangulation(
|
|
const Index v3 = F(f2, c2);
|
|
const Index v3 = F(f2, c2);
|
|
assert(F(f2, (c2+2)%3) == v1);
|
|
assert(F(f2, (c2+2)%3) == v1);
|
|
assert(F(f2, (c2+1)%3) == v2);
|
|
assert(F(f2, (c2+1)%3) == v2);
|
|
- // From gptoolbox/mesh/flip_edge.m
|
|
|
|
- // "If edge-after-flip already exists then this will create a non-manifold
|
|
|
|
- // edge"
|
|
|
|
- // Yes, this can happen: e.g., an edge of a tetrahedron."
|
|
|
|
- // "If two edges will be the same edge after flip then this will create a
|
|
|
|
- // non-manifold edge."
|
|
|
|
- // I dont' think this can happen if we flip one at a time. gptoolbox
|
|
|
|
- // flips in parallel.
|
|
|
|
-
|
|
|
|
- //// Over 50% of the time is spent doing this check...
|
|
|
|
- //bool flippable = !edge_exists_near(v3,v4,uei);
|
|
|
|
- //if(flippable)
|
|
|
|
- if(true)
|
|
|
|
- {
|
|
|
|
- assert( std::abs(l(f1,c1)-l(f2,c2)) < igl::EPS<Scalar>() );
|
|
|
|
- const Scalar e = l(f1,c1);
|
|
|
|
- const Scalar a = l(f1,(c1+1)%3);
|
|
|
|
- const Scalar b = l(f1,(c1+2)%3);
|
|
|
|
- const Scalar c = l(f2,(c2+1)%3);
|
|
|
|
- const Scalar d = l(f2,(c2+2)%3);
|
|
|
|
- // tan(α/2)
|
|
|
|
- const Scalar tan_a_2= tan_half_angle(a,b,e);
|
|
|
|
- // tan(δ/2)
|
|
|
|
- const Scalar tan_d_2 = tan_half_angle(d,e,c);
|
|
|
|
- // tan((α+δ)/2)
|
|
|
|
- const Scalar tan_a_d_2 = (tan_a_2 + tan_d_2)/(1.0-tan_a_2*tan_d_2);
|
|
|
|
- // cos(α+δ)
|
|
|
|
- const Scalar cos_a_d =
|
|
|
|
- (1.0 - tan_a_d_2*tan_a_d_2)/(1.0+tan_a_d_2*tan_a_d_2);
|
|
|
|
- const Scalar f = sqrt(b*b + c*c - 2.0*b*c*cos_a_d);
|
|
|
|
- l(f1,0) = f;
|
|
|
|
- l(f1,1) = b;
|
|
|
|
- l(f1,2) = c;
|
|
|
|
- l(f2,0) = f;
|
|
|
|
- l(f2,1) = d;
|
|
|
|
- l(f2,2) = a;
|
|
|
|
- // Important to grab these indices _before_ calling flip_edges (they
|
|
|
|
- // will be correct after)
|
|
|
|
- const size_t e_24 = f1 + ((c1 + 1) % 3) * num_faces;
|
|
|
|
- const size_t e_41 = f1 + ((c1 + 2) % 3) * num_faces;
|
|
|
|
- const size_t e_13 = f2 + ((c2 + 1) % 3) * num_faces;
|
|
|
|
- const size_t e_32 = f2 + ((c2 + 2) % 3) * num_faces;
|
|
|
|
- const size_t ue_24 = EMAP(e_24);
|
|
|
|
- const size_t ue_41 = EMAP(e_41);
|
|
|
|
- const size_t ue_13 = EMAP(e_13);
|
|
|
|
- const size_t ue_32 = EMAP(e_32);
|
|
|
|
- flip_edge(F, E, uE, EMAP, uE2E, uei);
|
|
|
|
- Q.push_back(ue_24);
|
|
|
|
- Q.push_back(ue_41);
|
|
|
|
- Q.push_back(ue_13);
|
|
|
|
- Q.push_back(ue_32);
|
|
|
|
- }
|
|
|
|
|
|
+ assert( std::abs(l(f1,c1)-l(f2,c2)) < igl::EPS<Scalar>() );
|
|
|
|
+ const Scalar e = l(f1,c1);
|
|
|
|
+ const Scalar a = l(f1,(c1+1)%3);
|
|
|
|
+ const Scalar b = l(f1,(c1+2)%3);
|
|
|
|
+ const Scalar c = l(f2,(c2+1)%3);
|
|
|
|
+ const Scalar d = l(f2,(c2+2)%3);
|
|
|
|
+ // tan(α/2)
|
|
|
|
+ const Scalar tan_a_2= tan_half_angle(a,b,e);
|
|
|
|
+ // tan(δ/2)
|
|
|
|
+ const Scalar tan_d_2 = tan_half_angle(d,e,c);
|
|
|
|
+ // tan((α+δ)/2)
|
|
|
|
+ const Scalar tan_a_d_2 = (tan_a_2 + tan_d_2)/(1.0-tan_a_2*tan_d_2);
|
|
|
|
+ // cos(α+δ)
|
|
|
|
+ const Scalar cos_a_d =
|
|
|
|
+ (1.0 - tan_a_d_2*tan_a_d_2)/(1.0+tan_a_d_2*tan_a_d_2);
|
|
|
|
+ const Scalar f = sqrt(b*b + c*c - 2.0*b*c*cos_a_d);
|
|
|
|
+ l(f1,0) = f;
|
|
|
|
+ l(f1,1) = b;
|
|
|
|
+ l(f1,2) = c;
|
|
|
|
+ l(f2,0) = f;
|
|
|
|
+ l(f2,1) = d;
|
|
|
|
+ l(f2,2) = a;
|
|
|
|
+ // Important to grab these indices _before_ calling flip_edges (they
|
|
|
|
+ // will be correct after)
|
|
|
|
+ const size_t e_24 = f1 + ((c1 + 1) % 3) * num_faces;
|
|
|
|
+ const size_t e_41 = f1 + ((c1 + 2) % 3) * num_faces;
|
|
|
|
+ const size_t e_13 = f2 + ((c2 + 1) % 3) * num_faces;
|
|
|
|
+ const size_t e_32 = f2 + ((c2 + 2) % 3) * num_faces;
|
|
|
|
+ const size_t ue_24 = EMAP(e_24);
|
|
|
|
+ const size_t ue_41 = EMAP(e_41);
|
|
|
|
+ const size_t ue_13 = EMAP(e_13);
|
|
|
|
+ const size_t ue_32 = EMAP(e_32);
|
|
|
|
+ flip_edge(F, E, uE, EMAP, uE2E, uei);
|
|
|
|
+ Q.push_back(ue_24);
|
|
|
|
+ Q.push_back(ue_41);
|
|
|
|
+ Q.push_back(ue_13);
|
|
|
|
+ Q.push_back(ue_32);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|