|
@@ -1,356 +0,0 @@
|
|
|
-// This file is part of libigl, a simple c++ geometry processing library.
|
|
|
-//
|
|
|
-// Copyright (C) 2015 Alec Jacobson <alecjacobson@gmail.com>
|
|
|
-//
|
|
|
-// This Source Code Form is subject to the terms of the Mozilla Public License
|
|
|
-// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
|
|
-// obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
-#include "slice_tets.h"
|
|
|
-#include "LinSpaced.h"
|
|
|
-#include "sort.h"
|
|
|
-#include "edges.h"
|
|
|
-#include "slice.h"
|
|
|
-#include "cat.h"
|
|
|
-#include "ismember.h"
|
|
|
-#include "unique_rows.h"
|
|
|
-#include <cassert>
|
|
|
-#include <algorithm>
|
|
|
-#include <vector>
|
|
|
-
|
|
|
-template <
|
|
|
- typename DerivedV,
|
|
|
- typename DerivedT,
|
|
|
- typename DerivedS,
|
|
|
- typename DerivedSV,
|
|
|
- typename DerivedSF,
|
|
|
- typename DerivedJ,
|
|
|
- typename BCType>
|
|
|
-IGL_INLINE void igl::slice_tets(
|
|
|
- const Eigen::MatrixBase<DerivedV>& V,
|
|
|
- const Eigen::MatrixBase<DerivedT>& T,
|
|
|
- const Eigen::MatrixBase<DerivedS> & S,
|
|
|
- Eigen::PlainObjectBase<DerivedSV>& SV,
|
|
|
- Eigen::PlainObjectBase<DerivedSF>& SF,
|
|
|
- Eigen::PlainObjectBase<DerivedJ>& J,
|
|
|
- Eigen::SparseMatrix<BCType> & BC)
|
|
|
-{
|
|
|
- Eigen::MatrixXi sE;
|
|
|
- Eigen::Matrix<typename DerivedSV::Scalar,Eigen::Dynamic,1> lambda;
|
|
|
- igl::slice_tets(V,T,S,SV,SF,J,sE,lambda);
|
|
|
- const int ns = SV.rows();
|
|
|
- std::vector<Eigen::Triplet<BCType> > BCIJV(ns*2);
|
|
|
- for(int i = 0;i<ns;i++)
|
|
|
- {
|
|
|
- BCIJV[2*i+0] = Eigen::Triplet<BCType>(i,sE(i,0), lambda(i));
|
|
|
- BCIJV[2*i+1] = Eigen::Triplet<BCType>(i,sE(i,1),1.0-lambda(i));
|
|
|
- }
|
|
|
- BC.resize(SV.rows(),V.rows());
|
|
|
- BC.setFromTriplets(BCIJV.begin(),BCIJV.end());
|
|
|
-}
|
|
|
-
|
|
|
-template <
|
|
|
- typename DerivedV,
|
|
|
- typename DerivedT,
|
|
|
- typename DerivedS,
|
|
|
- typename DerivedSV,
|
|
|
- typename DerivedSF,
|
|
|
- typename DerivedJ>
|
|
|
-IGL_INLINE void igl::slice_tets(
|
|
|
- const Eigen::MatrixBase<DerivedV>& V,
|
|
|
- const Eigen::MatrixBase<DerivedT>& T,
|
|
|
- const Eigen::MatrixBase<DerivedS> & S,
|
|
|
- Eigen::PlainObjectBase<DerivedSV>& SV,
|
|
|
- Eigen::PlainObjectBase<DerivedSF>& SF,
|
|
|
- Eigen::PlainObjectBase<DerivedJ>& J)
|
|
|
-{
|
|
|
- Eigen::MatrixXi sE;
|
|
|
- Eigen::Matrix<typename DerivedSV::Scalar,Eigen::Dynamic,1> lambda;
|
|
|
- igl::slice_tets(V,T,S,SV,SF,J,sE,lambda);
|
|
|
-}
|
|
|
-
|
|
|
-template <
|
|
|
- typename DerivedV,
|
|
|
- typename DerivedT,
|
|
|
- typename DerivedS,
|
|
|
- typename DerivedSV,
|
|
|
- typename DerivedSF,
|
|
|
- typename DerivedJ,
|
|
|
- typename DerivedsE,
|
|
|
- typename Derivedlambda>
|
|
|
-IGL_INLINE void igl::slice_tets(
|
|
|
- const Eigen::MatrixBase<DerivedV>& V,
|
|
|
- const Eigen::MatrixBase<DerivedT>& T,
|
|
|
- const Eigen::MatrixBase<DerivedS> & S,
|
|
|
- Eigen::PlainObjectBase<DerivedSV>& SV,
|
|
|
- Eigen::PlainObjectBase<DerivedSF>& SF,
|
|
|
- Eigen::PlainObjectBase<DerivedJ>& J,
|
|
|
- Eigen::PlainObjectBase<DerivedsE>& sE,
|
|
|
- Eigen::PlainObjectBase<Derivedlambda>& lambda)
|
|
|
-{
|
|
|
-
|
|
|
- using namespace Eigen;
|
|
|
- using namespace std;
|
|
|
- assert(V.cols() == 3 && "V should be #V by 3");
|
|
|
- assert(T.cols() == 4 && "T should be #T by 4");
|
|
|
-
|
|
|
- static const Eigen::Matrix<int,12,4> flipped_order =
|
|
|
- (Eigen::Matrix<int,12,4>(12,4)<<
|
|
|
- 3,2,0,1,
|
|
|
- 3,1,2,0,
|
|
|
- 3,0,1,2,
|
|
|
- 2,3,1,0,
|
|
|
- 2,1,0,3,
|
|
|
- 2,0,3,1,
|
|
|
- 1,3,0,2,
|
|
|
- 1,2,3,0,
|
|
|
- 1,0,2,3,
|
|
|
- 0,3,2,1,
|
|
|
- 0,2,1,3,
|
|
|
- 0,1,3,2
|
|
|
- ).finished();
|
|
|
-
|
|
|
- // number of tets
|
|
|
- const size_t m = T.rows();
|
|
|
-
|
|
|
- typedef typename DerivedS::Scalar Scalar;
|
|
|
- typedef typename DerivedT::Scalar Index;
|
|
|
- typedef Matrix<Scalar,Dynamic,1> VectorXS;
|
|
|
- typedef Matrix<Scalar,Dynamic,4> MatrixX4S;
|
|
|
- typedef Matrix<Scalar,Dynamic,3> MatrixX3S;
|
|
|
- typedef Matrix<Scalar,Dynamic,2> MatrixX2S;
|
|
|
- typedef Matrix<Index,Dynamic,4> MatrixX4I;
|
|
|
- typedef Matrix<Index,Dynamic,3> MatrixX3I;
|
|
|
- typedef Matrix<Index,Dynamic,2> MatrixX2I;
|
|
|
- typedef Matrix<Index,Dynamic,1> VectorXI;
|
|
|
- typedef Array<bool,Dynamic,1> ArrayXb;
|
|
|
-
|
|
|
- MatrixX4S IT(m,4);
|
|
|
- for(size_t t = 0;t<m;t++)
|
|
|
- {
|
|
|
- for(size_t c = 0;c<4;c++)
|
|
|
- {
|
|
|
- IT(t,c) = S(T(t,c));
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // Essentially, just a glorified slice(X,1)
|
|
|
- //
|
|
|
- // Inputs:
|
|
|
- // T #T by 4 list of tet indices into V
|
|
|
- // IT #IT by 4 list of isosurface values at each tet
|
|
|
- // I #I list of bools whether to grab data corresponding to each tet
|
|
|
- const auto & extract_rows = [](
|
|
|
- const MatrixBase<DerivedT> & T,
|
|
|
- const MatrixX4S & IT,
|
|
|
- const ArrayXb & I,
|
|
|
- MatrixX4I & TI,
|
|
|
- MatrixX4S & ITI,
|
|
|
- VectorXI & JI)
|
|
|
- {
|
|
|
- const Index num_I = std::count(I.data(),I.data()+I.size(),true);
|
|
|
- TI.resize(num_I,4);
|
|
|
- ITI.resize(num_I,4);
|
|
|
- JI.resize(num_I,1);
|
|
|
- {
|
|
|
- size_t k = 0;
|
|
|
- for(size_t t = 0;t<(size_t)T.rows();t++)
|
|
|
- {
|
|
|
- if(I(t))
|
|
|
- {
|
|
|
- TI.row(k) = T.row(t);
|
|
|
- ITI.row(k) = IT.row(t);
|
|
|
- JI(k) = t;
|
|
|
- k++;
|
|
|
- }
|
|
|
- }
|
|
|
- assert(k == num_I);
|
|
|
- }
|
|
|
- };
|
|
|
-
|
|
|
- ArrayXb I13 = (IT.array()<0).rowwise().count()==1;
|
|
|
- ArrayXb I31 = (IT.array()>0).rowwise().count()==1;
|
|
|
- ArrayXb I22 = (IT.array()<0).rowwise().count()==2;
|
|
|
- MatrixX4I T13,T31,T22;
|
|
|
- MatrixX4S IT13,IT31,IT22;
|
|
|
- VectorXI J13,J31,J22;
|
|
|
- extract_rows(T,IT,I13,T13,IT13,J13);
|
|
|
- extract_rows(T,IT,I31,T31,IT31,J31);
|
|
|
- extract_rows(T,IT,I22,T22,IT22,J22);
|
|
|
-
|
|
|
- const auto & apply_sort4 = [] (
|
|
|
- const MatrixX4I & T,
|
|
|
- const MatrixX4I & sJ,
|
|
|
- MatrixX4I & sT)
|
|
|
- {
|
|
|
- sT.resize(T.rows(),4);
|
|
|
- for(size_t t = 0;t<(size_t)T.rows();t++)
|
|
|
- {
|
|
|
- for(size_t c = 0;c<4;c++)
|
|
|
- {
|
|
|
- sT(t,c) = T(t,sJ(t,c));
|
|
|
- }
|
|
|
- }
|
|
|
- };
|
|
|
-
|
|
|
- const auto & apply_sort2 = [] (
|
|
|
- const MatrixX2I & E,
|
|
|
- const MatrixX2I & sJ,
|
|
|
- Eigen::PlainObjectBase<DerivedsE>& sE)
|
|
|
- {
|
|
|
- sE.resize(E.rows(),2);
|
|
|
- for(size_t t = 0;t<(size_t)E.rows();t++)
|
|
|
- {
|
|
|
- for(size_t c = 0;c<2;c++)
|
|
|
- {
|
|
|
- sE(t,c) = E(t,sJ(t,c));
|
|
|
- }
|
|
|
- }
|
|
|
- };
|
|
|
-
|
|
|
- const auto & one_below = [&apply_sort4](
|
|
|
- const MatrixX4I & T,
|
|
|
- const MatrixX4S & IT,
|
|
|
- MatrixX2I & U,
|
|
|
- MatrixX3I & SF)
|
|
|
- {
|
|
|
- // Number of tets
|
|
|
- const size_t m = T.rows();
|
|
|
- if(m == 0)
|
|
|
- {
|
|
|
- U.resize(0,2);
|
|
|
- SF.resize(0,3);
|
|
|
- return;
|
|
|
- }
|
|
|
- MatrixX4S sIT;
|
|
|
- MatrixX4I sJ;
|
|
|
- sort(IT,2,true,sIT,sJ);
|
|
|
- MatrixX4I sT;
|
|
|
- apply_sort4(T,sJ,sT);
|
|
|
- U.resize(3*m,2);
|
|
|
- U<<
|
|
|
- sT.col(0),sT.col(1),
|
|
|
- sT.col(0),sT.col(2),
|
|
|
- sT.col(0),sT.col(3);
|
|
|
- SF.resize(m,3);
|
|
|
- for(size_t c = 0;c<3;c++)
|
|
|
- {
|
|
|
- SF.col(c) =
|
|
|
- igl::LinSpaced<
|
|
|
- Eigen::Matrix<typename DerivedSF::Scalar,Eigen::Dynamic,1> >
|
|
|
- (m,0+c*m,(m-1)+c*m);
|
|
|
- }
|
|
|
- ArrayXb flip;
|
|
|
- {
|
|
|
- VectorXi _;
|
|
|
- ismember_rows(sJ,flipped_order,flip,_);
|
|
|
- }
|
|
|
- for(int i = 0;i<m;i++)
|
|
|
- {
|
|
|
- if(flip(i))
|
|
|
- {
|
|
|
- SF.row(i) = SF.row(i).reverse().eval();
|
|
|
- }
|
|
|
- }
|
|
|
- };
|
|
|
-
|
|
|
- const auto & two_below = [&apply_sort4](
|
|
|
- const MatrixX4I & T,
|
|
|
- const MatrixX4S & IT,
|
|
|
- MatrixX2I & U,
|
|
|
- MatrixX3I & SF)
|
|
|
- {
|
|
|
- // Number of tets
|
|
|
- const size_t m = T.rows();
|
|
|
- if(m == 0)
|
|
|
- {
|
|
|
- U.resize(0,2);
|
|
|
- SF.resize(0,3);
|
|
|
- return;
|
|
|
- }
|
|
|
- MatrixX4S sIT;
|
|
|
- MatrixX4I sJ;
|
|
|
- sort(IT,2,true,sIT,sJ);
|
|
|
- MatrixX4I sT;
|
|
|
- apply_sort4(T,sJ,sT);
|
|
|
- U.resize(4*m,2);
|
|
|
- U<<
|
|
|
- sT.col(0),sT.col(2),
|
|
|
- sT.col(0),sT.col(3),
|
|
|
- sT.col(1),sT.col(2),
|
|
|
- sT.col(1),sT.col(3);
|
|
|
- SF.resize(2*m,3);
|
|
|
- SF.block(0,0,m,1) = igl::LinSpaced<VectorXI >(m,0+0*m,(m-1)+0*m);
|
|
|
- SF.block(0,1,m,1) = igl::LinSpaced<VectorXI >(m,0+1*m,(m-1)+1*m);
|
|
|
- SF.block(0,2,m,1) = igl::LinSpaced<VectorXI >(m,0+3*m,(m-1)+3*m);
|
|
|
- SF.block(m,0,m,1) = igl::LinSpaced<VectorXI >(m,0+0*m,(m-1)+0*m);
|
|
|
- SF.block(m,1,m,1) = igl::LinSpaced<VectorXI >(m,0+3*m,(m-1)+3*m);
|
|
|
- SF.block(m,2,m,1) = igl::LinSpaced<VectorXI >(m,0+2*m,(m-1)+2*m);
|
|
|
- ArrayXb flip;
|
|
|
- {
|
|
|
- VectorXi _;
|
|
|
- ismember_rows(sJ,flipped_order,flip,_);
|
|
|
- }
|
|
|
- for(int i = 0;i<m;i++)
|
|
|
- {
|
|
|
- if(flip(i))
|
|
|
- {
|
|
|
- SF.row(i ) = SF.row(i ).reverse().eval();
|
|
|
- SF.row(i+m) = SF.row(i+m).reverse().eval();
|
|
|
- }
|
|
|
- }
|
|
|
- };
|
|
|
-
|
|
|
- MatrixX3I SF13,SF31,SF22;
|
|
|
- MatrixX2I U13,U31,U22;
|
|
|
- one_below(T13, IT13,U13,SF13);
|
|
|
- one_below(T31,-IT31,U31,SF31);
|
|
|
- two_below(T22, IT22,U22,SF22);
|
|
|
- // https://forum.kde.org/viewtopic.php?f=74&t=107974
|
|
|
- const MatrixX2I U =
|
|
|
- (MatrixX2I(U13.rows()+ U31.rows()+ U22.rows(),2)<<U13,U31,U22).finished();
|
|
|
- MatrixX2I sU;
|
|
|
- {
|
|
|
- MatrixX2I _;
|
|
|
- sort(U,2,true,sU,_);
|
|
|
- }
|
|
|
- MatrixX2I E;
|
|
|
- VectorXI uI,uJ;
|
|
|
- unique_rows(sU,E,uI,uJ);
|
|
|
- MatrixX2S IE(E.rows(),2);
|
|
|
- for(size_t t = 0;t<E.rows();t++)
|
|
|
- {
|
|
|
- for(size_t c = 0;c<2;c++)
|
|
|
- {
|
|
|
- IE(t,c) = S(E(t,c));
|
|
|
- }
|
|
|
- }
|
|
|
- MatrixX2S sIE;
|
|
|
- MatrixX2I sJ;
|
|
|
- sort(IE,2,true,sIE,sJ);
|
|
|
- apply_sort2(E,sJ,sE);
|
|
|
- lambda = sIE.col(1).array() / (sIE.col(1)-sIE.col(0)).array();
|
|
|
- SV.resize(sE.rows(),V.cols());
|
|
|
- for(int e = 0;e<sE.rows();e++)
|
|
|
- {
|
|
|
- SV.row(e) = V.row(sE(e,0)).template cast<Scalar>()*lambda(e) +
|
|
|
- V.row(sE(e,1)).template cast<Scalar>()*(1.0-lambda(e));
|
|
|
- }
|
|
|
- SF.resize( SF13.rows()+SF31.rows()+SF22.rows(),3);
|
|
|
- SF<<
|
|
|
- SF13,
|
|
|
- U13.rows()+ SF31.rowwise().reverse().array(),
|
|
|
- U13.rows()+U31.rows()+SF22.array();
|
|
|
-
|
|
|
- std::for_each(
|
|
|
- SF.data(),
|
|
|
- SF.data()+SF.size(),
|
|
|
- [&uJ](typename DerivedSF::Scalar & i){i=uJ(i);});
|
|
|
-
|
|
|
- J.resize(SF.rows());
|
|
|
- J<<J13,J31,J22,J22;
|
|
|
-}
|
|
|
-
|
|
|
-#ifdef IGL_STATIC_LIBRARY
|
|
|
-// Explicit template instantiation
|
|
|
-template void igl::slice_tets<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, double>(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> >&, Eigen::SparseMatrix<double, 0, int>&);
|
|
|
-#endif
|