Browse Source

Merge branch 's-koch-python_bindings'

Former-commit-id: 9715a83dd652f393c45a19cde9dd19898a69714c
Daniele Panozzo 9 years ago
parent
commit
25a108bc55

+ 953 - 0
include/igl/AABB.cpp

@@ -0,0 +1,953 @@
+// This file is part of libigl, a simple c++ geometry processing library.
+//
+// Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla Public License
+// v. 2.0. If a copy of the MPL was not distributed with this file, You can
+// obtain one at http://mozilla.org/MPL/2.0/.
+#include "AABB.h"
+#include "EPS.h"
+#include "barycenter.h"
+#include "barycentric_coordinates.h"
+#include "colon.h"
+#include "colon.h"
+#include "doublearea.h"
+#include "matlab_format.h"
+#include "point_simplex_squared_distance.h"
+#include "project_to_line_segment.h"
+#include "sort.h"
+#include "volume.h"
+#include "ray_box_intersect.h"
+#include "ray_mesh_intersect.h"
+#include <iostream>
+#include <iomanip>
+#include <limits>
+#include <list>
+#include <queue>
+#include <stack>
+
+template <typename DerivedV, int DIM>
+  template <typename Derivedbb_mins, typename Derivedbb_maxs>
+inline void igl::AABB<DerivedV,DIM>::init(
+    const Eigen::PlainObjectBase<DerivedV> & V,
+    const Eigen::MatrixXi & Ele, 
+    const Eigen::PlainObjectBase<Derivedbb_mins> & bb_mins,
+    const Eigen::PlainObjectBase<Derivedbb_maxs> & bb_maxs,
+    const Eigen::VectorXi & elements,
+    const int i)
+{
+  using namespace std;
+  using namespace Eigen;
+  deinit();
+  if(bb_mins.size() > 0)
+  {
+    assert(bb_mins.rows() == bb_maxs.rows() && "Serial tree arrays must match");
+    assert(bb_mins.cols() == V.cols() && "Serial tree array dim must match V");
+    assert(bb_mins.cols() == bb_maxs.cols() && "Serial tree arrays must match");
+    assert(bb_mins.rows() == elements.rows() &&
+        "Serial tree arrays must match");
+    // construct from serialization
+    m_box.extend(bb_mins.row(i).transpose());
+    m_box.extend(bb_maxs.row(i).transpose());
+    m_primitive = elements(i);
+    // Not leaf then recurse
+    if(m_primitive == -1)
+    {
+      m_left = new AABB();
+      m_left->init( V,Ele,bb_mins,bb_maxs,elements,2*i+1);
+      m_right = new AABB();
+      m_right->init( V,Ele,bb_mins,bb_maxs,elements,2*i+2);
+      //m_depth = std::max( m_left->m_depth, m_right->m_depth)+1;
+    }
+  }else
+  {
+    VectorXi allI = colon<int>(0,Ele.rows()-1);
+    MatrixXDIMS BC;
+    if(Ele.cols() == 1)
+    {
+      // points
+      BC = V;
+    }else
+    {
+      // Simplices
+      barycenter(V,Ele,BC);
+    }
+    MatrixXi SI(BC.rows(),BC.cols());
+    {
+      MatrixXDIMS _;
+      MatrixXi IS;
+      igl::sort(BC,1,true,_,IS);
+      // Need SI(i) to tell which place i would be sorted into
+      const int dim = IS.cols();
+      for(int i = 0;i<IS.rows();i++)
+      {
+        for(int d = 0;d<dim;d++)
+        {
+          SI(IS(i,d),d) = i;
+        }
+      }
+    }
+    init(V,Ele,SI,allI);
+  }
+}
+
+  template <typename DerivedV, int DIM>
+inline void igl::AABB<DerivedV,DIM>::init(
+    const Eigen::PlainObjectBase<DerivedV> & V,
+    const Eigen::MatrixXi & Ele)
+{
+  using namespace Eigen;
+  // deinit will be immediately called...
+  return init(V,Ele,MatrixXDIMS(),MatrixXDIMS(),VectorXi(),0);
+}
+
+  template <typename DerivedV, int DIM>
+inline void igl::AABB<DerivedV,DIM>::init(
+    const Eigen::PlainObjectBase<DerivedV> & V,
+    const Eigen::MatrixXi & Ele, 
+    const Eigen::MatrixXi & SI,
+    const Eigen::VectorXi & I)
+{
+  using namespace Eigen;
+  using namespace std;
+  deinit();
+  if(V.size() == 0 || Ele.size() == 0 || I.size() == 0)
+  {
+    return;
+  }
+  assert(DIM == V.cols() && "V.cols() should matched declared dimension");
+  //const Scalar inf = numeric_limits<Scalar>::infinity();
+  m_box = AlignedBox<Scalar,DIM>();
+  // Compute bounding box
+  for(int i = 0;i<I.rows();i++)
+  {
+    for(int c = 0;c<Ele.cols();c++)
+    {
+      m_box.extend(V.row(Ele(I(i),c)).transpose());
+      m_box.extend(V.row(Ele(I(i),c)).transpose());
+    }
+  }
+  switch(I.size())
+  {
+    case 0:
+      {
+        assert(false);
+      }
+    case 1:
+      {
+        m_primitive = I(0);
+        break;
+      }
+    default:
+      {
+        // Compute longest direction
+        int max_d = -1;
+        m_box.diagonal().maxCoeff(&max_d);
+        // Can't use median on BC directly because many may have same value,
+        // but can use median on sorted BC indices
+        VectorXi SIdI(I.rows());
+        for(int i = 0;i<I.rows();i++)
+        {
+          SIdI(i) = SI(I(i),max_d);
+        }
+        // Since later I use <= I think I don't need to worry about odd/even
+        // Pass by copy to avoid changing input
+        const auto median = [](VectorXi A)->Scalar
+        {
+          size_t n = A.size()/2;
+          nth_element(A.data(),A.data()+n,A.data()+A.size());
+          if(A.rows() % 2 == 1)
+          {
+            return A(n);
+          }else
+          {
+            nth_element(A.data(),A.data()+n-1,A.data()+A.size());
+            return 0.5*(A(n)+A(n-1));
+          }
+        };
+        const Scalar med = median(SIdI);
+        VectorXi LI((I.rows()+1)/2),RI(I.rows()/2);
+        assert(LI.rows()+RI.rows() == I.rows());
+        // Distribute left and right
+        {
+          int li = 0;
+          int ri = 0;
+          for(int i = 0;i<I.rows();i++)
+          {
+            if(SIdI(i)<=med)
+            {
+              LI(li++) = I(i);
+            }else
+            {
+              RI(ri++) = I(i);
+            }
+          }
+        }
+        //m_depth = 0;
+        if(LI.rows()>0)
+        {
+          m_left = new AABB();
+          m_left->init(V,Ele,SI,LI);
+          //m_depth = std::max(m_depth, m_left->m_depth+1);
+        }
+        if(RI.rows()>0)
+        {
+          m_right = new AABB();
+          m_right->init(V,Ele,SI,RI);
+          //m_depth = std::max(m_depth, m_right->m_depth+1);
+        }
+      }
+  }
+}
+
+template <typename DerivedV, int DIM>
+inline bool igl::AABB<DerivedV,DIM>::is_leaf() const
+{
+  return m_primitive != -1;
+}
+
+template <typename DerivedV, int DIM>
+template <typename Derivedq>
+inline std::vector<int> igl::AABB<DerivedV,DIM>::find(
+    const Eigen::PlainObjectBase<DerivedV> & V,
+    const Eigen::MatrixXi & Ele, 
+    const Eigen::PlainObjectBase<Derivedq> & q,
+    const bool first) const
+{
+  using namespace std;
+  using namespace Eigen;
+  assert(q.size() == DIM && 
+      "Query dimension should match aabb dimension");
+  assert(Ele.cols() == V.cols()+1 && 
+      "AABB::find only makes sense for (d+1)-simplices");
+  const Scalar epsilon = igl::EPS<Scalar>();
+  // Check if outside bounding box
+  bool inside = m_box.contains(q.transpose());
+  if(!inside)
+  {
+    return std::vector<int>();
+  }
+  assert(m_primitive==-1 || (m_left == NULL && m_right == NULL));
+  if(is_leaf())
+  {
+    // Initialize to some value > -epsilon
+    Scalar a1=0,a2=0,a3=0,a4=0;
+    switch(DIM)
+    {
+      case 3:
+        {
+          // Barycentric coordinates
+          typedef Eigen::Matrix<Scalar,1,3> RowVector3S;
+          const RowVector3S V1 = V.row(Ele(m_primitive,0));
+          const RowVector3S V2 = V.row(Ele(m_primitive,1));
+          const RowVector3S V3 = V.row(Ele(m_primitive,2));
+          const RowVector3S V4 = V.row(Ele(m_primitive,3));
+          a1 = volume_single(V2,V4,V3,(RowVector3S)q);
+          a2 = volume_single(V1,V3,V4,(RowVector3S)q);
+          a3 = volume_single(V1,V4,V2,(RowVector3S)q);
+          a4 = volume_single(V1,V2,V3,(RowVector3S)q);
+          break;
+        }
+      case 2:
+        {
+          // Barycentric coordinates
+          typedef Eigen::Matrix<Scalar,2,1> Vector2S;
+          const Vector2S V1 = V.row(Ele(m_primitive,0));
+          const Vector2S V2 = V.row(Ele(m_primitive,1));
+          const Vector2S V3 = V.row(Ele(m_primitive,2));
+          // Hack for now to keep templates simple. If becomes bottleneck
+          // consider using std::enable_if_t 
+          const Vector2S q2 = q.head(2);
+          a1 = doublearea_single(V1,V2,q2);
+          a2 = doublearea_single(V2,V3,q2);
+          a3 = doublearea_single(V3,V1,q2);
+          break;
+        }
+      default:assert(false);
+    }
+    // Normalization is important for correcting sign
+    Scalar sum = a1+a2+a3+a4;
+    a1 /= sum;
+    a2 /= sum;
+    a3 /= sum;
+    a4 /= sum;
+    if(
+        a1>=-epsilon && 
+        a2>=-epsilon && 
+        a3>=-epsilon && 
+        a4>=-epsilon)
+    {
+      return std::vector<int>(1,m_primitive);
+    }else
+    {
+      return std::vector<int>();
+    }
+  }
+  std::vector<int> left = m_left->find(V,Ele,q,first);
+  if(first && !left.empty())
+  {
+    return left;
+  }
+  std::vector<int> right = m_right->find(V,Ele,q,first);
+  if(first)
+  {
+    return right;
+  }
+  left.insert(left.end(),right.begin(),right.end());
+  return left;
+}
+
+template <typename DerivedV, int DIM>
+inline int igl::AABB<DerivedV,DIM>::subtree_size() const
+{
+  // 1 for self
+  int n = 1;
+  int n_left = 0,n_right = 0;
+  if(m_left != NULL)
+  {
+    n_left = m_left->subtree_size();
+  }
+  if(m_right != NULL)
+  {
+    n_right = m_right->subtree_size();
+  }
+  n += 2*std::max(n_left,n_right);
+  return n;
+}
+
+
+template <typename DerivedV, int DIM>
+template <typename Derivedbb_mins, typename Derivedbb_maxs>
+inline void igl::AABB<DerivedV,DIM>::serialize(
+    Eigen::PlainObjectBase<Derivedbb_mins> & bb_mins,
+    Eigen::PlainObjectBase<Derivedbb_maxs> & bb_maxs,
+    Eigen::VectorXi & elements,
+    const int i) const
+{
+  using namespace std;
+  using namespace Eigen;
+  // Calling for root then resize output
+  if(i==0)
+  {
+    const int m = subtree_size();
+    //cout<<"m: "<<m<<endl;
+    bb_mins.resize(m,DIM);
+    bb_maxs.resize(m,DIM);
+    elements.resize(m,1);
+  }
+  //cout<<i<<" ";
+  bb_mins.row(i) = m_box.min();
+  bb_maxs.row(i) = m_box.max();
+  elements(i) = m_primitive;
+  if(m_left != NULL)
+  {
+    m_left->serialize(bb_mins,bb_maxs,elements,2*i+1);
+  }
+  if(m_right != NULL)
+  {
+    m_right->serialize(bb_mins,bb_maxs,elements,2*i+2);
+  }
+}
+
+template <typename DerivedV, int DIM>
+inline typename igl::AABB<DerivedV,DIM>::Scalar 
+igl::AABB<DerivedV,DIM>::squared_distance(
+  const Eigen::PlainObjectBase<DerivedV> & V,
+  const Eigen::MatrixXi & Ele, 
+  const RowVectorDIMS & p,
+  int & i,
+  RowVectorDIMS & c) const
+{
+  return squared_distance(V,Ele,p,std::numeric_limits<Scalar>::infinity(),i,c);
+}
+
+
+template <typename DerivedV, int DIM>
+inline typename igl::AABB<DerivedV,DIM>::Scalar 
+igl::AABB<DerivedV,DIM>::squared_distance(
+  const Eigen::PlainObjectBase<DerivedV> & V,
+  const Eigen::MatrixXi & Ele, 
+  const RowVectorDIMS & p,
+  Scalar min_sqr_d,
+  int & i,
+  RowVectorDIMS & c) const
+{
+  using namespace Eigen;
+  using namespace std;
+  Scalar sqr_d = min_sqr_d;
+  //assert(DIM == 3 && "Code has only been tested for DIM == 3");
+  assert((Ele.cols() == 3 || Ele.cols() == 2 || Ele.cols() == 1)
+    && "Code has only been tested for simplex sizes 3,2,1");
+
+  assert(m_primitive==-1 || (m_left == NULL && m_right == NULL));
+  if(is_leaf())
+  {
+    leaf_squared_distance(V,Ele,p,sqr_d,i,c);
+  }else
+  {
+    bool looked_left = false;
+    bool looked_right = false;
+    const auto & look_left = [&]()
+    {
+      int i_left;
+      RowVectorDIMS c_left = c;
+      Scalar sqr_d_left = m_left->squared_distance(V,Ele,p,sqr_d,i_left,c_left);
+      set_min(p,sqr_d_left,i_left,c_left,sqr_d,i,c);
+      looked_left = true;
+    };
+    const auto & look_right = [&]()
+    {
+      int i_right;
+      RowVectorDIMS c_right = c;
+      Scalar sqr_d_right = m_right->squared_distance(V,Ele,p,sqr_d,i_right,c_right);
+      set_min(p,sqr_d_right,i_right,c_right,sqr_d,i,c);
+      looked_right = true;
+    };
+
+    // must look left or right if in box
+    if(m_left->m_box.contains(p.transpose()))
+    {
+      look_left();
+    }
+    if(m_right->m_box.contains(p.transpose()))
+    {
+      look_right();
+    }
+    // if haven't looked left and could be less than current min, then look
+    Scalar  left_min_sqr_d = m_left->m_box.squaredExteriorDistance(p.transpose());
+    Scalar right_min_sqr_d = m_right->m_box.squaredExteriorDistance(p.transpose());
+    if(left_min_sqr_d < right_min_sqr_d)
+    {
+      if(!looked_left && left_min_sqr_d<sqr_d)
+      {
+        look_left();
+      }
+      if( !looked_right && right_min_sqr_d<sqr_d)
+      {
+        look_right();
+      }
+    }else
+    {
+      if( !looked_right && right_min_sqr_d<sqr_d)
+      {
+        look_right();
+      }
+      if(!looked_left && left_min_sqr_d<sqr_d)
+      {
+        look_left();
+      }
+    }
+  }
+  return sqr_d;
+}
+
+template <typename DerivedV, int DIM>
+template <
+  typename DerivedP, 
+  typename DerivedsqrD, 
+  typename DerivedI, 
+  typename DerivedC>
+inline void igl::AABB<DerivedV,DIM>::squared_distance(
+  const Eigen::PlainObjectBase<DerivedV> & V,
+  const Eigen::MatrixXi & Ele, 
+  const Eigen::PlainObjectBase<DerivedP> & P,
+  Eigen::PlainObjectBase<DerivedsqrD> & sqrD,
+  Eigen::PlainObjectBase<DerivedI> & I,
+  Eigen::PlainObjectBase<DerivedC> & C) const
+{
+  assert(P.cols() == V.cols() && "cols in P should match dim of cols in V");
+  sqrD.resize(P.rows(),1);
+  I.resize(P.rows(),1);
+  C.resize(P.rows(),P.cols());
+  for(int p = 0;p<P.rows();p++)
+  {
+    RowVectorDIMS Pp = P.row(p), c;
+    int Ip;
+    sqrD(p) = squared_distance(V,Ele,Pp,Ip,c);
+    I(p) = Ip;
+    C.row(p).head(DIM) = c;
+  }
+}
+
+template <typename DerivedV, int DIM>
+template < 
+  typename Derivedother_V,
+  typename DerivedsqrD, 
+  typename DerivedI, 
+  typename DerivedC>
+inline void igl::AABB<DerivedV,DIM>::squared_distance(
+  const Eigen::PlainObjectBase<DerivedV> & V,
+  const Eigen::MatrixXi & Ele, 
+  const AABB<Derivedother_V,DIM> & other,
+  const Eigen::PlainObjectBase<Derivedother_V> & other_V,
+  const Eigen::MatrixXi & other_Ele, 
+  Eigen::PlainObjectBase<DerivedsqrD> & sqrD,
+  Eigen::PlainObjectBase<DerivedI> & I,
+  Eigen::PlainObjectBase<DerivedC> & C) const
+{
+  assert(other_Ele.cols() == 1 && 
+    "Only implemented for other as list of points");
+  assert(other_V.cols() == V.cols() && "other must match this dimension");
+  sqrD.setConstant(other_Ele.rows(),1,std::numeric_limits<double>::infinity());
+  I.resize(other_Ele.rows(),1);
+  C.resize(other_Ele.rows(),other_V.cols());
+  // All points in other_V currently think they need to check against root of
+  // this. The point of using another AABB is to quickly prune chunks of
+  // other_V so that most points just check some subtree of this.
+
+  // This holds a conservative estimate of max(sqr_D) where sqr_D is the
+  // current best minimum squared distance for all points in this subtree
+  double min_sqr_d = std::numeric_limits<double>::infinity();
+  squared_distance_helper(
+    V,Ele,&other,other_V,other_Ele,min_sqr_d,sqrD,I,C);
+}
+
+template <typename DerivedV, int DIM>
+template < 
+  typename Derivedother_V,
+  typename DerivedsqrD, 
+  typename DerivedI, 
+  typename DerivedC>
+inline typename igl::AABB<DerivedV,DIM>::Scalar igl::AABB<DerivedV,DIM>::squared_distance_helper(
+  const Eigen::PlainObjectBase<DerivedV> & V,
+  const Eigen::MatrixXi & Ele, 
+  const AABB<Derivedother_V,DIM> * other,
+  const Eigen::PlainObjectBase<Derivedother_V> & other_V,
+  const Eigen::MatrixXi & other_Ele, 
+  const Scalar /*min_sqr_d*/,
+  Eigen::PlainObjectBase<DerivedsqrD> & sqrD,
+  Eigen::PlainObjectBase<DerivedI> & I,
+  Eigen::PlainObjectBase<DerivedC> & C) const
+{
+  using namespace std;
+  using namespace Eigen;
+
+  // This implementation is a bit disappointing. There's no major speed up. Any
+  // performance gains seem to come from accidental cache coherency and
+  // diminish for larger "other" (the opposite of what was intended).
+
+  // Base case
+  if(other->is_leaf() && this->is_leaf())
+  {
+    Scalar sqr_d = sqrD(other->m_primitive);
+    int i = I(other->m_primitive);
+    RowVectorDIMS c = C.row(      other->m_primitive);
+    RowVectorDIMS p = other_V.row(other->m_primitive);
+    leaf_squared_distance(V,Ele,p,sqr_d,i,c);
+    sqrD( other->m_primitive) = sqr_d;
+    I(    other->m_primitive) = i;
+    C.row(other->m_primitive) = c;
+    //cout<<"leaf: "<<sqr_d<<endl;
+    //other->m_max_sqr_d = sqr_d;
+    return sqr_d;
+  }
+
+  if(other->is_leaf())
+  {
+    Scalar sqr_d = sqrD(other->m_primitive);
+    int i = I(other->m_primitive);
+    RowVectorDIMS c = C.row(      other->m_primitive);
+    RowVectorDIMS p = other_V.row(other->m_primitive);
+    sqr_d = squared_distance(V,Ele,p,sqr_d,i,c);
+    sqrD( other->m_primitive) = sqr_d;
+    I(    other->m_primitive) = i;
+    C.row(other->m_primitive) = c;
+    //other->m_max_sqr_d = sqr_d;
+    return sqr_d;
+  }
+
+  //// Exact minimum squared distance between arbitary primitives inside this and
+  //// othre's bounding boxes
+  //const auto & min_squared_distance = [&](
+  //  const AABB<DerivedV,DIM> * A,
+  //  const AABB<Derivedother_V,DIM> * B)->Scalar
+  //{
+  //  return A->m_box.squaredExteriorDistance(B->m_box);
+  //};
+
+  if(this->is_leaf())
+  {
+    //if(min_squared_distance(this,other) < other->m_max_sqr_d)
+    if(true)
+    {
+      this->squared_distance_helper(
+        V,Ele,other->m_left,other_V,other_Ele,0,sqrD,I,C);
+      this->squared_distance_helper(
+        V,Ele,other->m_right,other_V,other_Ele,0,sqrD,I,C);
+    }else
+    {
+      // This is never reached...
+    }
+    //// we know other is not a leaf
+    //other->m_max_sqr_d = std::max(other->m_left->m_max_sqr_d,other->m_right->m_max_sqr_d);
+    return 0;
+  }
+
+  // FORCE DOWN TO OTHER LEAF EVAL
+  //if(min_squared_distance(this,other) < other->m_max_sqr_d)
+  if(true)
+  {
+    if(true)
+    {
+      this->squared_distance_helper(
+        V,Ele,other->m_left,other_V,other_Ele,0,sqrD,I,C);
+      this->squared_distance_helper(
+        V,Ele,other->m_right,other_V,other_Ele,0,sqrD,I,C);
+    }else // this direction never seems to be faster
+    {
+      this->m_left->squared_distance_helper(
+        V,Ele,other,other_V,other_Ele,0,sqrD,I,C);
+      this->m_right->squared_distance_helper(
+        V,Ele,other,other_V,other_Ele,0,sqrD,I,C);
+    }
+  }else
+  {
+    // this is never reached ... :-(
+  }
+  //// we know other is not a leaf
+  //other->m_max_sqr_d = std::max(other->m_left->m_max_sqr_d,other->m_right->m_max_sqr_d);
+
+  return 0;
+#if 0 // False
+
+  // _Very_ conservative approximation of maximum squared distance between
+  // primitives inside this and other's bounding boxes
+  const auto & max_squared_distance = [](
+    const AABB<DerivedV,DIM> * A,
+    const AABB<Derivedother_V,DIM> * B)->Scalar
+  {
+    AlignedBox<Scalar,DIM> combo = A->m_box;
+    combo.extend(B->m_box);
+    return combo.diagonal().squaredNorm();
+  };
+
+  //// other base-case
+  //if(other->is_leaf())
+  //{
+  //  double sqr_d = sqrD(other->m_primitive);
+  //  int i = I(other->m_primitive);
+  //  RowVectorDIMS c = C.row(m_primitive);
+  //  RowVectorDIMS p = other_V.row(m_primitive);
+  //  leaf_squared_distance(V,Ele,p,sqr_d,i,c);
+  //  sqrD(other->m_primitive) = sqr_d;
+  //  I(other->m_primitive) = i;
+  //  C.row(m_primitive) = c;
+  //  return;
+  //}
+  std::vector<const AABB<DerivedV,DIM> * > this_list;
+  if(this->is_leaf())
+  {
+    this_list.push_back(this);
+  }else
+  {
+    assert(this->m_left);
+    this_list.push_back(this->m_left);
+    assert(this->m_right);
+    this_list.push_back(this->m_right);
+  }
+  std::vector<AABB<Derivedother_V,DIM> *> other_list;
+  if(other->is_leaf())
+  {
+    other_list.push_back(other);
+  }else
+  {
+    assert(other->m_left);
+    other_list.push_back(other->m_left);
+    assert(other->m_right);
+    other_list.push_back(other->m_right);
+  }
+
+  //const std::function<Scalar(
+  //  const AABB<Derivedother_V,DIM> * other)
+  //    > max_sqr_d = [&sqrD,&max_sqr_d](const AABB<Derivedother_V,DIM> * other)->Scalar
+  //  {
+  //    if(other->is_leaf())
+  //    {
+  //      return sqrD(other->m_primitive);
+  //    }else
+  //    {
+  //      return std::max(max_sqr_d(other->m_left),max_sqr_d(other->m_right));
+  //    }
+  //  };
+
+  //// Potentially recurse on all pairs, if minimum distance is less than running
+  //// bound
+  //Eigen::Matrix<Scalar,Eigen::Dynamic,1> other_max_sqr_d =
+  //  Eigen::Matrix<Scalar,Eigen::Dynamic,1>::Constant(other_list.size(),1,min_sqr_d);
+  for(size_t child = 0;child<other_list.size();child++)
+  {
+    auto other_tree = other_list[child];
+
+    Eigen::Matrix<Scalar,Eigen::Dynamic,1> this_max_sqr_d(this_list.size(),1);
+    for(size_t t = 0;t<this_list.size();t++)
+    {
+      const auto this_tree = this_list[t];
+      this_max_sqr_d(t) = max_squared_distance(this_tree,other_tree);
+    }
+    if(this_list.size() ==2 &&
+      ( this_max_sqr_d(0) > this_max_sqr_d(1))
+      )
+    {
+      std::swap(this_list[0],this_list[1]);
+      //std::swap(this_max_sqr_d(0),this_max_sqr_d(1));
+    }
+    const Scalar sqr_d = this_max_sqr_d.minCoeff();
+
+
+    for(size_t t = 0;t<this_list.size();t++)
+    {
+      const auto this_tree = this_list[t];
+
+      //const auto mm = max_sqr_d(other_tree);
+      //const Scalar mc = other_max_sqr_d(child);
+      //assert(mc == mm);
+      // Only look left/right in this_list if can possible decrease somebody's
+      // distance in this_tree.
+      const Scalar min_this_other = min_squared_distance(this_tree,other_tree); 
+      if(
+          min_this_other < sqr_d && 
+          min_this_other < other_tree->m_max_sqr_d)
+      {
+        //cout<<"before: "<<other_max_sqr_d(child)<<endl;
+        //other_max_sqr_d(child) = std::min(
+        //  other_max_sqr_d(child),
+        //  this_tree->squared_distance_helper(
+        //    V,Ele,other_tree,other_V,other_Ele,other_max_sqr_d(child),sqrD,I,C));
+        //cout<<"after: "<<other_max_sqr_d(child)<<endl;
+          this_tree->squared_distance_helper(
+            V,Ele,other_tree,other_V,other_Ele,0,sqrD,I,C);
+      }
+    }
+  }
+  //const Scalar ret = other_max_sqr_d.maxCoeff();
+  //const auto mm = max_sqr_d(other);
+  //assert(mm == ret);
+  //cout<<"non-leaf: "<<ret<<endl;
+  //return ret;
+  if(!other->is_leaf())
+  {
+    other->m_max_sqr_d = std::max(other->m_left->m_max_sqr_d,other->m_right->m_max_sqr_d);
+  }
+  return 0;
+#endif
+}
+
+template <typename DerivedV, int DIM>
+inline void igl::AABB<DerivedV,DIM>::leaf_squared_distance(
+  const Eigen::PlainObjectBase<DerivedV> & V,
+  const Eigen::MatrixXi & Ele, 
+  const RowVectorDIMS & p,
+  Scalar & sqr_d,
+  int & i,
+  RowVectorDIMS & c) const
+{
+  using namespace Eigen;
+  using namespace std;
+  RowVectorDIMS c_candidate;
+  Scalar sqr_d_candidate;
+  igl::point_simplex_squared_distance<DIM>(
+    p,V,Ele,m_primitive,sqr_d_candidate,c_candidate);
+  set_min(p,sqr_d_candidate,m_primitive,c_candidate,sqr_d,i,c);
+}
+
+
+template <typename DerivedV, int DIM>
+inline void igl::AABB<DerivedV,DIM>::set_min(
+  const RowVectorDIMS & 
+#ifndef NDEBUG
+  p
+#endif
+  ,
+  const Scalar sqr_d_candidate,
+  const int i_candidate,
+  const RowVectorDIMS & c_candidate,
+  Scalar & sqr_d,
+  int & i,
+  RowVectorDIMS & c) const
+{
+#ifndef NDEBUG
+  //std::cout<<matlab_format(c_candidate,"c_candidate")<<std::endl;
+  const Scalar pc_norm = (p-c_candidate).squaredNorm();
+  const Scalar diff = fabs(sqr_d_candidate - pc_norm);
+  assert(diff<=1e-10 && "distance should match norm of difference");
+#endif
+  if(sqr_d_candidate < sqr_d)
+  {
+    i = i_candidate;
+    c = c_candidate;
+    sqr_d = sqr_d_candidate;
+  }
+}
+
+
+template <typename DerivedV, int DIM>
+inline bool 
+igl::AABB<DerivedV,DIM>::intersect_ray(
+  const Eigen::PlainObjectBase<DerivedV> & V,
+  const Eigen::MatrixXi & Ele, 
+  const RowVectorDIMS & origin,
+  const RowVectorDIMS & dir,
+  std::vector<igl::Hit> & hits) const
+{
+  hits.clear();
+  const Scalar t0 = 0;
+  const Scalar t1 = std::numeric_limits<Scalar>::infinity();
+  {
+    Scalar _1,_2;
+    if(!ray_box_intersect(origin,dir,m_box,t0,t1,_1,_2))
+    {
+      return false;
+    }
+  }
+  if(this->is_leaf())
+  {
+    // Actually process elements
+    assert((Ele.size() == 0 || Ele.cols() == 3) && "Elements should be triangles");
+    // Cheesecake way of hitting element
+    return ray_mesh_intersect(origin,dir,V,Ele.row(m_primitive),hits);
+  }
+  std::vector<igl::Hit> left_hits;
+  std::vector<igl::Hit> right_hits;
+  const bool left_ret = m_left->intersect_ray(V,Ele,origin,dir,left_hits);
+  const bool right_ret = m_right->intersect_ray(V,Ele,origin,dir,right_hits);
+  hits.insert(hits.end(),left_hits.begin(),left_hits.end());
+  hits.insert(hits.end(),right_hits.begin(),right_hits.end());
+  return left_ret || right_ret;
+}
+
+template <typename DerivedV, int DIM>
+inline bool 
+igl::AABB<DerivedV,DIM>::intersect_ray(
+  const Eigen::PlainObjectBase<DerivedV> & V,
+  const Eigen::MatrixXi & Ele, 
+  const RowVectorDIMS & origin,
+  const RowVectorDIMS & dir,
+  igl::Hit & hit) const
+{
+#if false
+  // BFS
+  std::queue<const AABB *> Q;
+  // Or DFS
+  //std::stack<const AABB *> Q;
+  Q.push(this);
+  bool any_hit = false;
+  hit.t = std::numeric_limits<Scalar>::infinity();
+  while(!Q.empty())
+  {
+    const AABB * tree = Q.front();
+    //const AABB * tree = Q.top();
+    Q.pop();
+    {
+      Scalar _1,_2;
+      if(!ray_box_intersect(
+        origin,dir,tree->m_box,Scalar(0),Scalar(hit.t),_1,_2))
+      {
+        continue;
+      }
+    }
+    if(tree->is_leaf())
+    {
+      // Actually process elements
+      assert((Ele.size() == 0 || Ele.cols() == 3) && "Elements should be triangles");
+      igl::Hit leaf_hit;
+      if(
+        ray_mesh_intersect(origin,dir,V,Ele.row(tree->m_primitive),leaf_hit)&&
+        leaf_hit.t < hit.t)
+      {
+        hit = leaf_hit;
+      }
+      continue;
+    }
+    // Add children to queue
+    Q.push(tree->m_left);
+    Q.push(tree->m_right);
+  }
+  return any_hit;
+#else
+  // DFS
+  return intersect_ray(
+    V,Ele,origin,dir,std::numeric_limits<Scalar>::infinity(),hit);
+#endif
+}
+
+template <typename DerivedV, int DIM>
+inline bool 
+igl::AABB<DerivedV,DIM>::intersect_ray(
+  const Eigen::PlainObjectBase<DerivedV> & V,
+  const Eigen::MatrixXi & Ele, 
+  const RowVectorDIMS & origin,
+  const RowVectorDIMS & dir,
+  const Scalar _min_t,
+  igl::Hit & hit) const
+{
+  //// Naive, slow
+  //std::vector<igl::Hit> hits;
+  //intersect_ray(V,Ele,origin,dir,hits);
+  //if(hits.size() > 0)
+  //{
+  //  hit = hits.front();
+  //  return true;
+  //}else
+  //{
+  //  return false;
+  //}
+  Scalar min_t = _min_t;
+  const Scalar t0 = 0;
+  {
+    Scalar _1,_2;
+    if(!ray_box_intersect(origin,dir,m_box,t0,min_t,_1,_2))
+    {
+      return false;
+    }
+  }
+  if(this->is_leaf())
+  {
+    // Actually process elements
+    assert((Ele.size() == 0 || Ele.cols() == 3) && "Elements should be triangles");
+    // Cheesecake way of hitting element
+    return ray_mesh_intersect(origin,dir,V,Ele.row(m_primitive),hit);
+  }
+
+  // Doesn't seem like smartly choosing left before/after right makes a
+  // differnce
+  igl::Hit left_hit;
+  igl::Hit right_hit;
+  bool left_ret = m_left->intersect_ray(V,Ele,origin,dir,min_t,left_hit);
+  if(left_ret && left_hit.t<min_t)
+  {
+    // It's scary that this line doesn't seem to matter....
+    min_t = left_hit.t;
+    hit = left_hit;
+    left_ret = true;
+  }else
+  {
+    left_ret = false;
+  }
+  bool right_ret = m_right->intersect_ray(V,Ele,origin,dir,min_t,right_hit);
+  if(right_ret && right_hit.t<min_t)
+  {
+    min_t = right_hit.t;
+    hit = right_hit;
+    right_ret = true;
+  }else
+  {
+    right_ret = false;
+  }
+  return left_ret || right_ret;
+}
+
+#ifdef IGL_STATIC_LIBRARY
+// Explicit template specialization
+template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 3>::init(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&);
+template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 2>::init(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&);
+template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 3>::squared_distance<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&) const;
+template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 2>::squared_distance<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&) const;
+template double igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 3>::squared_distance(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::Matrix<double, 1, 3, 1, 1, 3> const&, int&, Eigen::Matrix<double, 1, 3, 1, 1, 3>&) const;
+template double igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 2>::squared_distance(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::Matrix<double, 1, 2, 1, 1, 2> const&, int&, Eigen::Matrix<double, 1, 2, 1, 1, 2>&) const;
+template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 2>::squared_distance<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&) const;
+template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 3>::squared_distance<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&) const;
+
+
+#endif
+
+

+ 2 - 928
include/igl/AABB.h

@@ -289,935 +289,9 @@ public:
     };
 }
 
-// Implementation
-#include "EPS.h"
-#include "barycenter.h"
-#include "barycentric_coordinates.h"
-#include "colon.h"
-#include "colon.h"
-#include "doublearea.h"
-#include "matlab_format.h"
-#include "point_simplex_squared_distance.h"
-#include "project_to_line_segment.h"
-#include "sort.h"
-#include "volume.h"
-#include "ray_box_intersect.h"
-#include "ray_mesh_intersect.h"
-#include <iostream>
-#include <iomanip>
-#include <limits>
-#include <list>
-#include <queue>
-#include <stack>
 
-template <typename DerivedV, int DIM>
-  template <typename Derivedbb_mins, typename Derivedbb_maxs>
-inline void igl::AABB<DerivedV,DIM>::init(
-    const Eigen::PlainObjectBase<DerivedV> & V,
-    const Eigen::MatrixXi & Ele, 
-    const Eigen::PlainObjectBase<Derivedbb_mins> & bb_mins,
-    const Eigen::PlainObjectBase<Derivedbb_maxs> & bb_maxs,
-    const Eigen::VectorXi & elements,
-    const int i)
-{
-  using namespace std;
-  using namespace Eigen;
-  deinit();
-  if(bb_mins.size() > 0)
-  {
-    assert(bb_mins.rows() == bb_maxs.rows() && "Serial tree arrays must match");
-    assert(bb_mins.cols() == V.cols() && "Serial tree array dim must match V");
-    assert(bb_mins.cols() == bb_maxs.cols() && "Serial tree arrays must match");
-    assert(bb_mins.rows() == elements.rows() &&
-        "Serial tree arrays must match");
-    // construct from serialization
-    m_box.extend(bb_mins.row(i).transpose());
-    m_box.extend(bb_maxs.row(i).transpose());
-    m_primitive = elements(i);
-    // Not leaf then recurse
-    if(m_primitive == -1)
-    {
-      m_left = new AABB();
-      m_left->init( V,Ele,bb_mins,bb_maxs,elements,2*i+1);
-      m_right = new AABB();
-      m_right->init( V,Ele,bb_mins,bb_maxs,elements,2*i+2);
-      //m_depth = std::max( m_left->m_depth, m_right->m_depth)+1;
-    }
-  }else
-  {
-    VectorXi allI = colon<int>(0,Ele.rows()-1);
-    MatrixXDIMS BC;
-    if(Ele.cols() == 1)
-    {
-      // points
-      BC = V;
-    }else
-    {
-      // Simplices
-      barycenter(V,Ele,BC);
-    }
-    MatrixXi SI(BC.rows(),BC.cols());
-    {
-      MatrixXDIMS _;
-      MatrixXi IS;
-      igl::sort(BC,1,true,_,IS);
-      // Need SI(i) to tell which place i would be sorted into
-      const int dim = IS.cols();
-      for(int i = 0;i<IS.rows();i++)
-      {
-        for(int d = 0;d<dim;d++)
-        {
-          SI(IS(i,d),d) = i;
-        }
-      }
-    }
-    init(V,Ele,SI,allI);
-  }
-}
-
-  template <typename DerivedV, int DIM>
-inline void igl::AABB<DerivedV,DIM>::init(
-    const Eigen::PlainObjectBase<DerivedV> & V,
-    const Eigen::MatrixXi & Ele)
-{
-  using namespace Eigen;
-  // deinit will be immediately called...
-  return init(V,Ele,MatrixXDIMS(),MatrixXDIMS(),VectorXi(),0);
-}
-
-  template <typename DerivedV, int DIM>
-inline void igl::AABB<DerivedV,DIM>::init(
-    const Eigen::PlainObjectBase<DerivedV> & V,
-    const Eigen::MatrixXi & Ele, 
-    const Eigen::MatrixXi & SI,
-    const Eigen::VectorXi & I)
-{
-  using namespace Eigen;
-  using namespace std;
-  deinit();
-  if(V.size() == 0 || Ele.size() == 0 || I.size() == 0)
-  {
-    return;
-  }
-  assert(DIM == V.cols() && "V.cols() should matched declared dimension");
-  //const Scalar inf = numeric_limits<Scalar>::infinity();
-  m_box = AlignedBox<Scalar,DIM>();
-  // Compute bounding box
-  for(int i = 0;i<I.rows();i++)
-  {
-    for(int c = 0;c<Ele.cols();c++)
-    {
-      m_box.extend(V.row(Ele(I(i),c)).transpose());
-      m_box.extend(V.row(Ele(I(i),c)).transpose());
-    }
-  }
-  switch(I.size())
-  {
-    case 0:
-      {
-        assert(false);
-      }
-    case 1:
-      {
-        m_primitive = I(0);
-        break;
-      }
-    default:
-      {
-        // Compute longest direction
-        int max_d = -1;
-        m_box.diagonal().maxCoeff(&max_d);
-        // Can't use median on BC directly because many may have same value,
-        // but can use median on sorted BC indices
-        VectorXi SIdI(I.rows());
-        for(int i = 0;i<I.rows();i++)
-        {
-          SIdI(i) = SI(I(i),max_d);
-        }
-        // Since later I use <= I think I don't need to worry about odd/even
-        // Pass by copy to avoid changing input
-        const auto median = [](VectorXi A)->Scalar
-        {
-          size_t n = A.size()/2;
-          nth_element(A.data(),A.data()+n,A.data()+A.size());
-          if(A.rows() % 2 == 1)
-          {
-            return A(n);
-          }else
-          {
-            nth_element(A.data(),A.data()+n-1,A.data()+A.size());
-            return 0.5*(A(n)+A(n-1));
-          }
-        };
-        const Scalar med = median(SIdI);
-        VectorXi LI((I.rows()+1)/2),RI(I.rows()/2);
-        assert(LI.rows()+RI.rows() == I.rows());
-        // Distribute left and right
-        {
-          int li = 0;
-          int ri = 0;
-          for(int i = 0;i<I.rows();i++)
-          {
-            if(SIdI(i)<=med)
-            {
-              LI(li++) = I(i);
-            }else
-            {
-              RI(ri++) = I(i);
-            }
-          }
-        }
-        //m_depth = 0;
-        if(LI.rows()>0)
-        {
-          m_left = new AABB();
-          m_left->init(V,Ele,SI,LI);
-          //m_depth = std::max(m_depth, m_left->m_depth+1);
-        }
-        if(RI.rows()>0)
-        {
-          m_right = new AABB();
-          m_right->init(V,Ele,SI,RI);
-          //m_depth = std::max(m_depth, m_right->m_depth+1);
-        }
-      }
-  }
-}
-
-template <typename DerivedV, int DIM>
-inline bool igl::AABB<DerivedV,DIM>::is_leaf() const
-{
-  return m_primitive != -1;
-}
-
-template <typename DerivedV, int DIM>
-template <typename Derivedq>
-inline std::vector<int> igl::AABB<DerivedV,DIM>::find(
-    const Eigen::PlainObjectBase<DerivedV> & V,
-    const Eigen::MatrixXi & Ele, 
-    const Eigen::PlainObjectBase<Derivedq> & q,
-    const bool first) const
-{
-  using namespace std;
-  using namespace Eigen;
-  assert(q.size() == DIM && 
-      "Query dimension should match aabb dimension");
-  assert(Ele.cols() == V.cols()+1 && 
-      "AABB::find only makes sense for (d+1)-simplices");
-  const Scalar epsilon = igl::EPS<Scalar>();
-  // Check if outside bounding box
-  bool inside = m_box.contains(q.transpose());
-  if(!inside)
-  {
-    return std::vector<int>();
-  }
-  assert(m_primitive==-1 || (m_left == NULL && m_right == NULL));
-  if(is_leaf())
-  {
-    // Initialize to some value > -epsilon
-    Scalar a1=0,a2=0,a3=0,a4=0;
-    switch(DIM)
-    {
-      case 3:
-        {
-          // Barycentric coordinates
-          typedef Eigen::Matrix<Scalar,1,3> RowVector3S;
-          const RowVector3S V1 = V.row(Ele(m_primitive,0));
-          const RowVector3S V2 = V.row(Ele(m_primitive,1));
-          const RowVector3S V3 = V.row(Ele(m_primitive,2));
-          const RowVector3S V4 = V.row(Ele(m_primitive,3));
-          a1 = volume_single(V2,V4,V3,(RowVector3S)q);
-          a2 = volume_single(V1,V3,V4,(RowVector3S)q);
-          a3 = volume_single(V1,V4,V2,(RowVector3S)q);
-          a4 = volume_single(V1,V2,V3,(RowVector3S)q);
-          break;
-        }
-      case 2:
-        {
-          // Barycentric coordinates
-          typedef Eigen::Matrix<Scalar,2,1> Vector2S;
-          const Vector2S V1 = V.row(Ele(m_primitive,0));
-          const Vector2S V2 = V.row(Ele(m_primitive,1));
-          const Vector2S V3 = V.row(Ele(m_primitive,2));
-          // Hack for now to keep templates simple. If becomes bottleneck
-          // consider using std::enable_if_t 
-          const Vector2S q2 = q.head(2);
-          a1 = doublearea_single(V1,V2,q2);
-          a2 = doublearea_single(V2,V3,q2);
-          a3 = doublearea_single(V3,V1,q2);
-          break;
-        }
-      default:assert(false);
-    }
-    // Normalization is important for correcting sign
-    Scalar sum = a1+a2+a3+a4;
-    a1 /= sum;
-    a2 /= sum;
-    a3 /= sum;
-    a4 /= sum;
-    if(
-        a1>=-epsilon && 
-        a2>=-epsilon && 
-        a3>=-epsilon && 
-        a4>=-epsilon)
-    {
-      return std::vector<int>(1,m_primitive);
-    }else
-    {
-      return std::vector<int>();
-    }
-  }
-  std::vector<int> left = m_left->find(V,Ele,q,first);
-  if(first && !left.empty())
-  {
-    return left;
-  }
-  std::vector<int> right = m_right->find(V,Ele,q,first);
-  if(first)
-  {
-    return right;
-  }
-  left.insert(left.end(),right.begin(),right.end());
-  return left;
-}
-
-template <typename DerivedV, int DIM>
-inline int igl::AABB<DerivedV,DIM>::subtree_size() const
-{
-  // 1 for self
-  int n = 1;
-  int n_left = 0,n_right = 0;
-  if(m_left != NULL)
-  {
-    n_left = m_left->subtree_size();
-  }
-  if(m_right != NULL)
-  {
-    n_right = m_right->subtree_size();
-  }
-  n += 2*std::max(n_left,n_right);
-  return n;
-}
-
-
-template <typename DerivedV, int DIM>
-template <typename Derivedbb_mins, typename Derivedbb_maxs>
-inline void igl::AABB<DerivedV,DIM>::serialize(
-    Eigen::PlainObjectBase<Derivedbb_mins> & bb_mins,
-    Eigen::PlainObjectBase<Derivedbb_maxs> & bb_maxs,
-    Eigen::VectorXi & elements,
-    const int i) const
-{
-  using namespace std;
-  using namespace Eigen;
-  // Calling for root then resize output
-  if(i==0)
-  {
-    const int m = subtree_size();
-    //cout<<"m: "<<m<<endl;
-    bb_mins.resize(m,DIM);
-    bb_maxs.resize(m,DIM);
-    elements.resize(m,1);
-  }
-  //cout<<i<<" ";
-  bb_mins.row(i) = m_box.min();
-  bb_maxs.row(i) = m_box.max();
-  elements(i) = m_primitive;
-  if(m_left != NULL)
-  {
-    m_left->serialize(bb_mins,bb_maxs,elements,2*i+1);
-  }
-  if(m_right != NULL)
-  {
-    m_right->serialize(bb_mins,bb_maxs,elements,2*i+2);
-  }
-}
-
-template <typename DerivedV, int DIM>
-inline typename igl::AABB<DerivedV,DIM>::Scalar 
-igl::AABB<DerivedV,DIM>::squared_distance(
-  const Eigen::PlainObjectBase<DerivedV> & V,
-  const Eigen::MatrixXi & Ele, 
-  const RowVectorDIMS & p,
-  int & i,
-  RowVectorDIMS & c) const
-{
-  return squared_distance(V,Ele,p,std::numeric_limits<Scalar>::infinity(),i,c);
-}
-
-
-template <typename DerivedV, int DIM>
-inline typename igl::AABB<DerivedV,DIM>::Scalar 
-igl::AABB<DerivedV,DIM>::squared_distance(
-  const Eigen::PlainObjectBase<DerivedV> & V,
-  const Eigen::MatrixXi & Ele, 
-  const RowVectorDIMS & p,
-  Scalar min_sqr_d,
-  int & i,
-  RowVectorDIMS & c) const
-{
-  using namespace Eigen;
-  using namespace std;
-  Scalar sqr_d = min_sqr_d;
-  //assert(DIM == 3 && "Code has only been tested for DIM == 3");
-  assert((Ele.cols() == 3 || Ele.cols() == 2 || Ele.cols() == 1)
-    && "Code has only been tested for simplex sizes 3,2,1");
-
-  assert(m_primitive==-1 || (m_left == NULL && m_right == NULL));
-  if(is_leaf())
-  {
-    leaf_squared_distance(V,Ele,p,sqr_d,i,c);
-  }else
-  {
-    bool looked_left = false;
-    bool looked_right = false;
-    const auto & look_left = [&]()
-    {
-      int i_left;
-      RowVectorDIMS c_left = c;
-      Scalar sqr_d_left = m_left->squared_distance(V,Ele,p,sqr_d,i_left,c_left);
-      set_min(p,sqr_d_left,i_left,c_left,sqr_d,i,c);
-      looked_left = true;
-    };
-    const auto & look_right = [&]()
-    {
-      int i_right;
-      RowVectorDIMS c_right = c;
-      Scalar sqr_d_right = m_right->squared_distance(V,Ele,p,sqr_d,i_right,c_right);
-      set_min(p,sqr_d_right,i_right,c_right,sqr_d,i,c);
-      looked_right = true;
-    };
-
-    // must look left or right if in box
-    if(m_left->m_box.contains(p.transpose()))
-    {
-      look_left();
-    }
-    if(m_right->m_box.contains(p.transpose()))
-    {
-      look_right();
-    }
-    // if haven't looked left and could be less than current min, then look
-    Scalar  left_min_sqr_d = m_left->m_box.squaredExteriorDistance(p.transpose());
-    Scalar right_min_sqr_d = m_right->m_box.squaredExteriorDistance(p.transpose());
-    if(left_min_sqr_d < right_min_sqr_d)
-    {
-      if(!looked_left && left_min_sqr_d<sqr_d)
-      {
-        look_left();
-      }
-      if( !looked_right && right_min_sqr_d<sqr_d)
-      {
-        look_right();
-      }
-    }else
-    {
-      if( !looked_right && right_min_sqr_d<sqr_d)
-      {
-        look_right();
-      }
-      if(!looked_left && left_min_sqr_d<sqr_d)
-      {
-        look_left();
-      }
-    }
-  }
-  return sqr_d;
-}
-
-template <typename DerivedV, int DIM>
-template <
-  typename DerivedP, 
-  typename DerivedsqrD, 
-  typename DerivedI, 
-  typename DerivedC>
-inline void igl::AABB<DerivedV,DIM>::squared_distance(
-  const Eigen::PlainObjectBase<DerivedV> & V,
-  const Eigen::MatrixXi & Ele, 
-  const Eigen::PlainObjectBase<DerivedP> & P,
-  Eigen::PlainObjectBase<DerivedsqrD> & sqrD,
-  Eigen::PlainObjectBase<DerivedI> & I,
-  Eigen::PlainObjectBase<DerivedC> & C) const
-{
-  assert(P.cols() == V.cols() && "cols in P should match dim of cols in V");
-  sqrD.resize(P.rows(),1);
-  I.resize(P.rows(),1);
-  C.resize(P.rows(),P.cols());
-  for(int p = 0;p<P.rows();p++)
-  {
-    RowVectorDIMS Pp = P.row(p), c;
-    int Ip;
-    sqrD(p) = squared_distance(V,Ele,Pp,Ip,c);
-    I(p) = Ip;
-    C.row(p).head(DIM) = c;
-  }
-}
-
-template <typename DerivedV, int DIM>
-template < 
-  typename Derivedother_V,
-  typename DerivedsqrD, 
-  typename DerivedI, 
-  typename DerivedC>
-inline void igl::AABB<DerivedV,DIM>::squared_distance(
-  const Eigen::PlainObjectBase<DerivedV> & V,
-  const Eigen::MatrixXi & Ele, 
-  const AABB<Derivedother_V,DIM> & other,
-  const Eigen::PlainObjectBase<Derivedother_V> & other_V,
-  const Eigen::MatrixXi & other_Ele, 
-  Eigen::PlainObjectBase<DerivedsqrD> & sqrD,
-  Eigen::PlainObjectBase<DerivedI> & I,
-  Eigen::PlainObjectBase<DerivedC> & C) const
-{
-  assert(other_Ele.cols() == 1 && 
-    "Only implemented for other as list of points");
-  assert(other_V.cols() == V.cols() && "other must match this dimension");
-  sqrD.setConstant(other_Ele.rows(),1,std::numeric_limits<double>::infinity());
-  I.resize(other_Ele.rows(),1);
-  C.resize(other_Ele.rows(),other_V.cols());
-  // All points in other_V currently think they need to check against root of
-  // this. The point of using another AABB is to quickly prune chunks of
-  // other_V so that most points just check some subtree of this.
-
-  // This holds a conservative estimate of max(sqr_D) where sqr_D is the
-  // current best minimum squared distance for all points in this subtree
-  double min_sqr_d = std::numeric_limits<double>::infinity();
-  squared_distance_helper(
-    V,Ele,&other,other_V,other_Ele,min_sqr_d,sqrD,I,C);
-}
-
-template <typename DerivedV, int DIM>
-template < 
-  typename Derivedother_V,
-  typename DerivedsqrD, 
-  typename DerivedI, 
-  typename DerivedC>
-inline typename igl::AABB<DerivedV,DIM>::Scalar igl::AABB<DerivedV,DIM>::squared_distance_helper(
-  const Eigen::PlainObjectBase<DerivedV> & V,
-  const Eigen::MatrixXi & Ele, 
-  const AABB<Derivedother_V,DIM> * other,
-  const Eigen::PlainObjectBase<Derivedother_V> & other_V,
-  const Eigen::MatrixXi & other_Ele, 
-  const Scalar /*min_sqr_d*/,
-  Eigen::PlainObjectBase<DerivedsqrD> & sqrD,
-  Eigen::PlainObjectBase<DerivedI> & I,
-  Eigen::PlainObjectBase<DerivedC> & C) const
-{
-  using namespace std;
-  using namespace Eigen;
-
-  // This implementation is a bit disappointing. There's no major speed up. Any
-  // performance gains seem to come from accidental cache coherency and
-  // diminish for larger "other" (the opposite of what was intended).
-
-  // Base case
-  if(other->is_leaf() && this->is_leaf())
-  {
-    Scalar sqr_d = sqrD(other->m_primitive);
-    int i = I(other->m_primitive);
-    RowVectorDIMS c = C.row(      other->m_primitive);
-    RowVectorDIMS p = other_V.row(other->m_primitive);
-    leaf_squared_distance(V,Ele,p,sqr_d,i,c);
-    sqrD( other->m_primitive) = sqr_d;
-    I(    other->m_primitive) = i;
-    C.row(other->m_primitive) = c;
-    //cout<<"leaf: "<<sqr_d<<endl;
-    //other->m_max_sqr_d = sqr_d;
-    return sqr_d;
-  }
-
-  if(other->is_leaf())
-  {
-    Scalar sqr_d = sqrD(other->m_primitive);
-    int i = I(other->m_primitive);
-    RowVectorDIMS c = C.row(      other->m_primitive);
-    RowVectorDIMS p = other_V.row(other->m_primitive);
-    sqr_d = squared_distance(V,Ele,p,sqr_d,i,c);
-    sqrD( other->m_primitive) = sqr_d;
-    I(    other->m_primitive) = i;
-    C.row(other->m_primitive) = c;
-    //other->m_max_sqr_d = sqr_d;
-    return sqr_d;
-  }
-
-  //// Exact minimum squared distance between arbitary primitives inside this and
-  //// othre's bounding boxes
-  //const auto & min_squared_distance = [&](
-  //  const AABB<DerivedV,DIM> * A,
-  //  const AABB<Derivedother_V,DIM> * B)->Scalar
-  //{
-  //  return A->m_box.squaredExteriorDistance(B->m_box);
-  //};
-
-  if(this->is_leaf())
-  {
-    //if(min_squared_distance(this,other) < other->m_max_sqr_d)
-    if(true)
-    {
-      this->squared_distance_helper(
-        V,Ele,other->m_left,other_V,other_Ele,0,sqrD,I,C);
-      this->squared_distance_helper(
-        V,Ele,other->m_right,other_V,other_Ele,0,sqrD,I,C);
-    }else
-    {
-      // This is never reached...
-    }
-    //// we know other is not a leaf
-    //other->m_max_sqr_d = std::max(other->m_left->m_max_sqr_d,other->m_right->m_max_sqr_d);
-    return 0;
-  }
-
-  // FORCE DOWN TO OTHER LEAF EVAL
-  //if(min_squared_distance(this,other) < other->m_max_sqr_d)
-  if(true)
-  {
-    if(true)
-    {
-      this->squared_distance_helper(
-        V,Ele,other->m_left,other_V,other_Ele,0,sqrD,I,C);
-      this->squared_distance_helper(
-        V,Ele,other->m_right,other_V,other_Ele,0,sqrD,I,C);
-    }else // this direction never seems to be faster
-    {
-      this->m_left->squared_distance_helper(
-        V,Ele,other,other_V,other_Ele,0,sqrD,I,C);
-      this->m_right->squared_distance_helper(
-        V,Ele,other,other_V,other_Ele,0,sqrD,I,C);
-    }
-  }else
-  {
-    // this is never reached ... :-(
-  }
-  //// we know other is not a leaf
-  //other->m_max_sqr_d = std::max(other->m_left->m_max_sqr_d,other->m_right->m_max_sqr_d);
-
-  return 0;
-#if 0 // False
-
-  // _Very_ conservative approximation of maximum squared distance between
-  // primitives inside this and other's bounding boxes
-  const auto & max_squared_distance = [](
-    const AABB<DerivedV,DIM> * A,
-    const AABB<Derivedother_V,DIM> * B)->Scalar
-  {
-    AlignedBox<Scalar,DIM> combo = A->m_box;
-    combo.extend(B->m_box);
-    return combo.diagonal().squaredNorm();
-  };
-
-  //// other base-case
-  //if(other->is_leaf())
-  //{
-  //  double sqr_d = sqrD(other->m_primitive);
-  //  int i = I(other->m_primitive);
-  //  RowVectorDIMS c = C.row(m_primitive);
-  //  RowVectorDIMS p = other_V.row(m_primitive);
-  //  leaf_squared_distance(V,Ele,p,sqr_d,i,c);
-  //  sqrD(other->m_primitive) = sqr_d;
-  //  I(other->m_primitive) = i;
-  //  C.row(m_primitive) = c;
-  //  return;
-  //}
-  std::vector<const AABB<DerivedV,DIM> * > this_list;
-  if(this->is_leaf())
-  {
-    this_list.push_back(this);
-  }else
-  {
-    assert(this->m_left);
-    this_list.push_back(this->m_left);
-    assert(this->m_right);
-    this_list.push_back(this->m_right);
-  }
-  std::vector<AABB<Derivedother_V,DIM> *> other_list;
-  if(other->is_leaf())
-  {
-    other_list.push_back(other);
-  }else
-  {
-    assert(other->m_left);
-    other_list.push_back(other->m_left);
-    assert(other->m_right);
-    other_list.push_back(other->m_right);
-  }
-
-  //const std::function<Scalar(
-  //  const AABB<Derivedother_V,DIM> * other)
-  //    > max_sqr_d = [&sqrD,&max_sqr_d](const AABB<Derivedother_V,DIM> * other)->Scalar
-  //  {
-  //    if(other->is_leaf())
-  //    {
-  //      return sqrD(other->m_primitive);
-  //    }else
-  //    {
-  //      return std::max(max_sqr_d(other->m_left),max_sqr_d(other->m_right));
-  //    }
-  //  };
-
-  //// Potentially recurse on all pairs, if minimum distance is less than running
-  //// bound
-  //Eigen::Matrix<Scalar,Eigen::Dynamic,1> other_max_sqr_d =
-  //  Eigen::Matrix<Scalar,Eigen::Dynamic,1>::Constant(other_list.size(),1,min_sqr_d);
-  for(size_t child = 0;child<other_list.size();child++)
-  {
-    auto other_tree = other_list[child];
-
-    Eigen::Matrix<Scalar,Eigen::Dynamic,1> this_max_sqr_d(this_list.size(),1);
-    for(size_t t = 0;t<this_list.size();t++)
-    {
-      const auto this_tree = this_list[t];
-      this_max_sqr_d(t) = max_squared_distance(this_tree,other_tree);
-    }
-    if(this_list.size() ==2 &&
-      ( this_max_sqr_d(0) > this_max_sqr_d(1))
-      )
-    {
-      std::swap(this_list[0],this_list[1]);
-      //std::swap(this_max_sqr_d(0),this_max_sqr_d(1));
-    }
-    const Scalar sqr_d = this_max_sqr_d.minCoeff();
-
-
-    for(size_t t = 0;t<this_list.size();t++)
-    {
-      const auto this_tree = this_list[t];
-
-      //const auto mm = max_sqr_d(other_tree);
-      //const Scalar mc = other_max_sqr_d(child);
-      //assert(mc == mm);
-      // Only look left/right in this_list if can possible decrease somebody's
-      // distance in this_tree.
-      const Scalar min_this_other = min_squared_distance(this_tree,other_tree); 
-      if(
-          min_this_other < sqr_d && 
-          min_this_other < other_tree->m_max_sqr_d)
-      {
-        //cout<<"before: "<<other_max_sqr_d(child)<<endl;
-        //other_max_sqr_d(child) = std::min(
-        //  other_max_sqr_d(child),
-        //  this_tree->squared_distance_helper(
-        //    V,Ele,other_tree,other_V,other_Ele,other_max_sqr_d(child),sqrD,I,C));
-        //cout<<"after: "<<other_max_sqr_d(child)<<endl;
-          this_tree->squared_distance_helper(
-            V,Ele,other_tree,other_V,other_Ele,0,sqrD,I,C);
-      }
-    }
-  }
-  //const Scalar ret = other_max_sqr_d.maxCoeff();
-  //const auto mm = max_sqr_d(other);
-  //assert(mm == ret);
-  //cout<<"non-leaf: "<<ret<<endl;
-  //return ret;
-  if(!other->is_leaf())
-  {
-    other->m_max_sqr_d = std::max(other->m_left->m_max_sqr_d,other->m_right->m_max_sqr_d);
-  }
-  return 0;
-#endif
-}
-
-template <typename DerivedV, int DIM>
-inline void igl::AABB<DerivedV,DIM>::leaf_squared_distance(
-  const Eigen::PlainObjectBase<DerivedV> & V,
-  const Eigen::MatrixXi & Ele, 
-  const RowVectorDIMS & p,
-  Scalar & sqr_d,
-  int & i,
-  RowVectorDIMS & c) const
-{
-  using namespace Eigen;
-  using namespace std;
-  RowVectorDIMS c_candidate;
-  Scalar sqr_d_candidate;
-  igl::point_simplex_squared_distance<DIM>(
-    p,V,Ele,m_primitive,sqr_d_candidate,c_candidate);
-  set_min(p,sqr_d_candidate,m_primitive,c_candidate,sqr_d,i,c);
-}
-
-
-template <typename DerivedV, int DIM>
-inline void igl::AABB<DerivedV,DIM>::set_min(
-  const RowVectorDIMS & 
-#ifndef NDEBUG
-  p
-#endif
-  ,
-  const Scalar sqr_d_candidate,
-  const int i_candidate,
-  const RowVectorDIMS & c_candidate,
-  Scalar & sqr_d,
-  int & i,
-  RowVectorDIMS & c) const
-{
-#ifndef NDEBUG
-  //std::cout<<matlab_format(c_candidate,"c_candidate")<<std::endl;
-  const Scalar pc_norm = (p-c_candidate).squaredNorm();
-  const Scalar diff = fabs(sqr_d_candidate - pc_norm);
-  assert(diff<=1e-10 && "distance should match norm of difference");
+#ifndef IGL_STATIC_LIBRARY
+#  include "AABB.cpp"
 #endif
-  if(sqr_d_candidate < sqr_d)
-  {
-    i = i_candidate;
-    c = c_candidate;
-    sqr_d = sqr_d_candidate;
-  }
-}
-
-
-template <typename DerivedV, int DIM>
-inline bool 
-igl::AABB<DerivedV,DIM>::intersect_ray(
-  const Eigen::PlainObjectBase<DerivedV> & V,
-  const Eigen::MatrixXi & Ele, 
-  const RowVectorDIMS & origin,
-  const RowVectorDIMS & dir,
-  std::vector<igl::Hit> & hits) const
-{
-  hits.clear();
-  const Scalar t0 = 0;
-  const Scalar t1 = std::numeric_limits<Scalar>::infinity();
-  {
-    Scalar _1,_2;
-    if(!ray_box_intersect(origin,dir,m_box,t0,t1,_1,_2))
-    {
-      return false;
-    }
-  }
-  if(this->is_leaf())
-  {
-    // Actually process elements
-    assert((Ele.size() == 0 || Ele.cols() == 3) && "Elements should be triangles");
-    // Cheesecake way of hitting element
-    return ray_mesh_intersect(origin,dir,V,Ele.row(m_primitive),hits);
-  }
-  std::vector<igl::Hit> left_hits;
-  std::vector<igl::Hit> right_hits;
-  const bool left_ret = m_left->intersect_ray(V,Ele,origin,dir,left_hits);
-  const bool right_ret = m_right->intersect_ray(V,Ele,origin,dir,right_hits);
-  hits.insert(hits.end(),left_hits.begin(),left_hits.end());
-  hits.insert(hits.end(),right_hits.begin(),right_hits.end());
-  return left_ret || right_ret;
-}
-
-template <typename DerivedV, int DIM>
-inline bool 
-igl::AABB<DerivedV,DIM>::intersect_ray(
-  const Eigen::PlainObjectBase<DerivedV> & V,
-  const Eigen::MatrixXi & Ele, 
-  const RowVectorDIMS & origin,
-  const RowVectorDIMS & dir,
-  igl::Hit & hit) const
-{
-#if false
-  // BFS
-  std::queue<const AABB *> Q;
-  // Or DFS
-  //std::stack<const AABB *> Q;
-  Q.push(this);
-  bool any_hit = false;
-  hit.t = std::numeric_limits<Scalar>::infinity();
-  while(!Q.empty())
-  {
-    const AABB * tree = Q.front();
-    //const AABB * tree = Q.top();
-    Q.pop();
-    {
-      Scalar _1,_2;
-      if(!ray_box_intersect(
-        origin,dir,tree->m_box,Scalar(0),Scalar(hit.t),_1,_2))
-      {
-        continue;
-      }
-    }
-    if(tree->is_leaf())
-    {
-      // Actually process elements
-      assert((Ele.size() == 0 || Ele.cols() == 3) && "Elements should be triangles");
-      igl::Hit leaf_hit;
-      if(
-        ray_mesh_intersect(origin,dir,V,Ele.row(tree->m_primitive),leaf_hit)&&
-        leaf_hit.t < hit.t)
-      {
-        hit = leaf_hit;
-      }
-      continue;
-    }
-    // Add children to queue
-    Q.push(tree->m_left);
-    Q.push(tree->m_right);
-  }
-  return any_hit;
-#else
-  // DFS
-  return intersect_ray(
-    V,Ele,origin,dir,std::numeric_limits<Scalar>::infinity(),hit);
-#endif
-}
-
-template <typename DerivedV, int DIM>
-inline bool 
-igl::AABB<DerivedV,DIM>::intersect_ray(
-  const Eigen::PlainObjectBase<DerivedV> & V,
-  const Eigen::MatrixXi & Ele, 
-  const RowVectorDIMS & origin,
-  const RowVectorDIMS & dir,
-  const Scalar _min_t,
-  igl::Hit & hit) const
-{
-  //// Naive, slow
-  //std::vector<igl::Hit> hits;
-  //intersect_ray(V,Ele,origin,dir,hits);
-  //if(hits.size() > 0)
-  //{
-  //  hit = hits.front();
-  //  return true;
-  //}else
-  //{
-  //  return false;
-  //}
-  Scalar min_t = _min_t;
-  const Scalar t0 = 0;
-  {
-    Scalar _1,_2;
-    if(!ray_box_intersect(origin,dir,m_box,t0,min_t,_1,_2))
-    {
-      return false;
-    }
-  }
-  if(this->is_leaf())
-  {
-    // Actually process elements
-    assert((Ele.size() == 0 || Ele.cols() == 3) && "Elements should be triangles");
-    // Cheesecake way of hitting element
-    return ray_mesh_intersect(origin,dir,V,Ele.row(m_primitive),hit);
-  }
-
-  // Doesn't seem like smartly choosing left before/after right makes a
-  // differnce
-  igl::Hit left_hit;
-  igl::Hit right_hit;
-  bool left_ret = m_left->intersect_ray(V,Ele,origin,dir,min_t,left_hit);
-  if(left_ret && left_hit.t<min_t)
-  {
-    // It's scary that this line doesn't seem to matter....
-    min_t = left_hit.t;
-    hit = left_hit;
-    left_ret = true;
-  }else
-  {
-    left_ret = false;
-  }
-  bool right_ret = m_right->intersect_ray(V,Ele,origin,dir,min_t,right_hit);
-  if(right_ret && right_hit.t<min_t)
-  {
-    min_t = right_hit.t;
-    hit = right_hit;
-    right_ret = true;
-  }else
-  {
-    right_ret = false;
-  }
-  return left_ret || right_ret;
-}
 
 #endif

+ 5 - 5
include/igl/round.cpp

@@ -1,9 +1,9 @@
 // This file is part of libigl, a simple c++ geometry processing library.
-// 
+//
 // Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
-// 
-// This Source Code Form is subject to the terms of the Mozilla Public License 
-// v. 2.0. If a copy of the MPL was not distributed with this file, You can 
+//
+// This Source Code Form is subject to the terms of the Mozilla Public License
+// v. 2.0. If a copy of the MPL was not distributed with this file, You can
 // obtain one at http://mozilla.org/MPL/2.0/.
 #include "round.h"
 #include <cmath>
@@ -13,7 +13,7 @@
 template <typename DerivedX >
 IGL_INLINE DerivedX igl::round(const DerivedX r)
 {
-  return (r > 0.0) ? floor(r + 0.5) : ceil(r - 0.5);
+  return (r > 0.0) ? std::floor(r + 0.5) : std::ceil(r - 0.5);
 }
 
 template < typename DerivedX, typename DerivedY>

+ 4 - 0
include/igl/slice_mask.cpp

@@ -117,4 +117,8 @@ IGL_INLINE DerivedX igl::slice_mask(
 
 #ifdef IGL_STATIC_LIBRARY
 template void igl::slice_mask<Eigen::Matrix<int, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::Array<bool, -1, 1, 0, -1, 1> const&, int, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&);
+template void igl::slice_mask<Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Array<bool, -1, 1, 0, -1, 1> const&, Eigen::Array<bool, -1, 1, 0, -1, 1> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
+template void igl::slice_mask<Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Array<bool, -1, 1, 0, -1, 1> const&, int, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
+template void igl::slice_mask<Eigen::Matrix<int, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::Array<bool, -1, 1, 0, -1, 1> const&, Eigen::Array<bool, -1, 1, 0, -1, 1> const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&);
+
 #endif

+ 5 - 1
python/iglhelpers.py

@@ -8,7 +8,9 @@ def p2e(m):
             return igl.eigen.MatrixXi(m)
         elif m.dtype.type == np.float64:
             return igl.eigen.MatrixXd(m)
-        raise TypeError("p2e only support dtype float64 or int32")
+        elif m.dtype.type == np.bool:
+            return igl.eigen.MatrixXb(m)
+        raise TypeError("p2e only support dtype float64, int32 and bool")
     if sparse.issparse(m):
         # convert in a dense matrix with triples
         coo = m.tocoo()
@@ -34,6 +36,8 @@ def e2p(m):
         return np.array(m, dtype='float64')
     elif isinstance(m, igl.eigen.MatrixXi):
         return np.array(m, dtype='int32')
+    elif isinstance(m, igl.eigen.MatrixXb):
+        return np.array(m, dtype='bool')
     elif isinstance(m, igl.eigen.SparseMatrixd):
         coo = np.array(m.toCOO())
         I = coo[:, 0]

+ 51 - 6
python/py_doc.cpp

@@ -32,6 +32,40 @@ const char *__doc_igl_local_basis = R"igl_Qu8mg5v7(// Compute a local orthogonal
   //   B3 eigen matrix #F by 3, normal of the triangle
   //
   // See also: adjacency_matrix)igl_Qu8mg5v7";
+const char *__doc_igl_signed_distance = R"igl_Qu8mg5v7(// Computes signed distance to a mesh
+  //
+  // Inputs:
+  //   P  #P by 3 list of query point positions
+  //   V  #V by 3 list of vertex positions
+  //   F  #F by ss list of triangle indices, ss should be 3 unless sign_type ==
+  //     SIGNED_DISTANCE_TYPE_UNSIGNED
+  //   sign_type  method for computing distance _sign_ S
+  // Outputs:
+  //   S  #P list of smallest signed distances
+  //   I  #P list of facet indices corresponding to smallest distances
+  //   C  #P by 3 list of closest points
+  //   N  #P by 3 list of closest normals (only set if
+  //     sign_type=SIGNED_DISTANCE_TYPE_PSEUDONORMAL)
+  //
+  // Known bugs: This only computes distances to triangles. So unreferenced
+  // vertices and degenerate triangles are ignored.)igl_Qu8mg5v7";
+const char *__doc_igl_signed_distance_pseudonormal = R"igl_Qu8mg5v7(// Computes signed distance to mesh
+  //
+  // Inputs:
+  //   tree  AABB acceleration tree (see AABB.h)
+  //   F  #F by 3 list of triangle indices
+  //   FN  #F by 3 list of triangle normals 
+  //   VN  #V by 3 list of vertex normals (ANGLE WEIGHTING)
+  //   EN  #E by 3 list of edge normals (UNIFORM WEIGHTING)
+  //   EMAP  #F*3 mapping edges in F to E
+  //   q  Query point
+  // Returns signed distance to mesh
+  //)igl_Qu8mg5v7";
+const char *__doc_igl_signed_distance_winding_number = R"igl_Qu8mg5v7(// Inputs:
+  //   tree  AABB acceleration tree (see cgal/point_mesh_squared_distance.h)
+  //   hier  Winding number evaluation hierarchy
+  //   q  Query point
+  // Returns signed distance to mesh)igl_Qu8mg5v7";
 const char *__doc_igl_cotmatrix = R"igl_Qu8mg5v7(// Constructs the cotangent stiffness matrix (discrete laplacian) for a given
   // mesh (V,F).
   //
@@ -340,6 +374,17 @@ const char *__doc_igl_upsample = R"igl_Qu8mg5v7(// Subdivide a mesh without movi
   //
   // Known issues:
   //   - assumes (V,F) is edge-manifold.)igl_Qu8mg5v7";
+const char *__doc_igl_slice_mask = R"igl_Qu8mg5v7(// Act like the matlab X(row_mask,col_mask) operator, where
+  // row_mask, col_mask are non-negative integer indices.
+  // 
+  // Inputs:
+  //   X  m by n matrix
+  //   R  m list of row bools
+  //   C  n list of column bools
+  // Output:
+  //   Y  #trues-in-R by #trues-in-C matrix
+  //
+  // See also: slice_mask)igl_Qu8mg5v7";
 const char *__doc_igl_point_mesh_squared_distance = R"igl_Qu8mg5v7(// Compute distances from a set of points P to a triangle mesh (V,F)
   //
   // Inputs:
@@ -672,12 +717,12 @@ const char *__doc_igl_cross_field_missmatch = R"igl_Qu8mg5v7(// Inputs:
   //   Handle_MMatch    #F by 3 eigen Matrix containing the integer missmatch of the cross field
   //                    across all face edges
   //)igl_Qu8mg5v7";
-const char *__doc_igl_grad = R"igl_Qu8mg5v7(// Gradient of a scalar function defined on piecewise linear elements (mesh)
-  // is constant on each triangle i,j,k:
-  // grad(Xijk) = (Xj-Xi) * (Vi - Vk)^R90 / 2A + (Xk-Xi) * (Vj - Vi)^R90 / 2A
-  // where Xi is the scalar value at vertex i, Vi is the 3D position of vertex
-  // i, and A is the area of triangle (i,j,k). ^R90 represent a rotation of
-  // 90 degrees
+const char *__doc_igl_grad = R"igl_Qu8mg5v7(// Gradient of a scalar function defined on piecewise linear elements (mesh)
+  // is constant on each triangle i,j,k:
+  // grad(Xijk) = (Xj-Xi) * (Vi - Vk)^R90 / 2A + (Xk-Xi) * (Vj - Vi)^R90 / 2A
+  // where Xi is the scalar value at vertex i, Vi is the 3D position of vertex
+  // i, and A is the area of triangle (i,j,k). ^R90 represent a rotation of
+  // 90 degrees
   //)igl_Qu8mg5v7";
 const char *__doc_igl_slice_into = R"igl_Qu8mg5v7(// Act like the matlab Y(row_indices,col_indices) = X
   // 

+ 4 - 0
python/py_doc.h

@@ -1,5 +1,8 @@
 extern const char *__doc_igl_principal_curvature;
 extern const char *__doc_igl_local_basis;
+extern const char *__doc_igl_signed_distance;
+extern const char *__doc_igl_signed_distance_pseudonormal;
+extern const char *__doc_igl_signed_distance_winding_number;
 extern const char *__doc_igl_cotmatrix;
 extern const char *__doc_igl_floor;
 extern const char *__doc_igl_slice;
@@ -26,6 +29,7 @@ extern const char *__doc_igl_barycentric_coordinates;
 extern const char *__doc_igl_lscm;
 extern const char *__doc_igl_find_cross_field_singularities;
 extern const char *__doc_igl_upsample;
+extern const char *__doc_igl_slice_mask;
 extern const char *__doc_igl_point_mesh_squared_distance;
 extern const char *__doc_igl_parula;
 extern const char *__doc_igl_setdiff;

+ 7 - 0
python/py_igl.cpp

@@ -62,6 +62,9 @@
 #include <igl/fit_rotations.h>
 #include <igl/polar_svd.h>
 #include <igl/covariance_scatter_matrix.h>
+#include <igl/slice_mask.h>
+#include <igl/signed_distance.h>
+//#include <igl/.h>
 
 
 void python_export_igl(py::module &m)
@@ -126,5 +129,9 @@ void python_export_igl(py::module &m)
 #include "py_igl/py_fit_rotations.cpp"
 #include "py_igl/py_polar_svd.cpp"
 #include "py_igl/py_covariance_scatter_matrix.cpp"
+#include "py_igl/py_slice_mask.cpp"
+#include "py_igl/py_signed_distance.cpp"
+
+//#include "py_igl/py_.cpp"
 
 }

+ 1 - 1
python/py_igl/py_AABB.cpp

@@ -5,7 +5,7 @@ AABB
 .def(py::init<const igl::AABB<Eigen::MatrixXd,3>& >())
 .def("init",[](igl::AABB<Eigen::MatrixXd,3>& tree, const Eigen::MatrixXd& V, const Eigen::MatrixXi& Ele)
 {
-    return tree.init(V, Ele, Eigen::Matrix<double, Eigen::Dynamic, 3>(), Eigen::Matrix<double, Eigen::Dynamic, 3>(), Eigen::MatrixXi(), 0); 
+    return tree.init(V, Ele, Eigen::Matrix<double, Eigen::Dynamic, 3>(), Eigen::Matrix<double, Eigen::Dynamic, 3>(), Eigen::VectorXi(), 0); 
 })
 .def("squared_distance", [](const igl::AABB<Eigen::MatrixXd,3>& tree, const Eigen::MatrixXd& V, const Eigen::MatrixXi& Ele, const Eigen::MatrixXd& P, Eigen::MatrixXd& sqrD, Eigen::MatrixXi& I, Eigen::MatrixXd& C)
 {

+ 1 - 1
python/py_igl/py_point_mesh_squared_distance.cpp

@@ -8,7 +8,7 @@ m.def("point_mesh_squared_distance", []
   Eigen::MatrixXd& C
 )
 {
-  assert_is_VectorX("I",I);
+//  assert_is_VectorX("I",I);
   return igl::point_mesh_squared_distance(P, V, Ele, sqrD, I, C);
 }, __doc_igl_point_mesh_squared_distance,
 py::arg("P"), py::arg("V"), py::arg("Ele"), py::arg("sqrD"), py::arg("I"), py::arg("C"));

+ 132 - 0
python/py_igl/py_signed_distance.cpp

@@ -0,0 +1,132 @@
+
+py::enum_<igl::SignedDistanceType>(m, "SignedDistanceType")
+    .value("SIGNED_DISTANCE_TYPE_PSEUDONORMAL", igl::SIGNED_DISTANCE_TYPE_PSEUDONORMAL)
+    .value("SIGNED_DISTANCE_TYPE_WINDING_NUMBER", igl::SIGNED_DISTANCE_TYPE_WINDING_NUMBER)
+    .value("SIGNED_DISTANCE_TYPE_DEFAULT", igl::SIGNED_DISTANCE_TYPE_DEFAULT)
+    .value("SIGNED_DISTANCE_TYPE_UNSIGNED", igl::SIGNED_DISTANCE_TYPE_UNSIGNED)
+    .value("NUM_SIGNED_DISTANCE_TYPE", igl::NUM_SIGNED_DISTANCE_TYPE)
+    .export_values();
+
+
+m.def("signed_distance", []
+(
+  const Eigen::MatrixXd& P,
+  const Eigen::MatrixXd& V,
+  const Eigen::MatrixXi& F,
+  const igl::SignedDistanceType sign_type,
+  Eigen::MatrixXd& S,
+  Eigen::MatrixXi& I,
+  Eigen::MatrixXd& C,
+  Eigen::MatrixXd& N
+)
+{
+  Eigen::VectorXd Sv;
+  Eigen::VectorXi Iv;
+  igl::signed_distance(P, V, F, sign_type, Sv, Iv, C, N);
+  S = Sv;
+  I = Iv;
+}, __doc_igl_signed_distance,
+py::arg("P"), py::arg("V"), py::arg("F"), py::arg("sign_type"), py::arg("S"), py::arg("I"), py::arg("C"), py::arg("N"));
+
+//m.def("signed_distance_pseudonormal", []
+//(
+//  const AABB<Eigen::MatrixXd, 3> & tree,
+//  const Eigen::MatrixXd& V,
+//  const Eigen::MatrixXi& F,
+//  const Eigen::MatrixXd& FN,
+//  const Eigen::MatrixXd& VN,
+//  const Eigen::MatrixXd& EN,
+//  const Eigen::MatrixXi& EMAP,
+//  const Eigen::MatrixXd& q
+//)
+//{
+//  assert_is_VectorX("q", q);
+//  assert_is_VectorX("EMAP",EMAP);
+//  return igl::signed_distance_pseudonormal(tree, V, F, FN, VN, EN, EMAP, q);
+//}, __doc_igl_signed_distance_pseudonormal,
+//py::arg("tree"), py::arg("V"), py::arg("F"), py::arg("FN"), py::arg("VN"), py::arg("EN"), py::arg("EMAP"), py::arg("q"));
+
+m.def("signed_distance_pseudonormal", []
+(
+  const Eigen::MatrixXd& P,
+  const Eigen::MatrixXd& V,
+  const Eigen::MatrixXi& F,
+  const igl::AABB<Eigen::MatrixXd, 3> & tree,
+  const Eigen::MatrixXd& FN,
+  const Eigen::MatrixXd& VN,
+  const Eigen::MatrixXd& EN,
+  const Eigen::MatrixXi& EMAP,
+  Eigen::MatrixXd& S,
+  Eigen::MatrixXi& I,
+  Eigen::MatrixXd& C,
+  Eigen::MatrixXd& N
+)
+{
+  assert_is_VectorX("EMAP", EMAP);
+  Eigen::VectorXi EMAPv;
+  if (EMAP.size() != 0)
+    EMAPv = EMAP;
+  Eigen::VectorXd Sv;
+  Eigen::VectorXi Iv;
+  igl::signed_distance_pseudonormal(P, V, F, tree, FN, VN, EN, EMAPv, Sv, Iv, C, N);
+  S = Sv;
+  I = Iv;
+}, __doc_igl_signed_distance_pseudonormal,
+py::arg("P"), py::arg("V"), py::arg("F"), py::arg("tree"), py::arg("FN"), py::arg("VN"), py::arg("EN"), py::arg("EMAP"), py::arg("S"), py::arg("I"), py::arg("C"), py::arg("N"));
+
+//m.def("signed_distance_pseudonormal", []
+//(
+//  const AABB<Eigen::MatrixXd, 3> & tree,
+//  const Eigen::MatrixXd& V,
+//  const Eigen::MatrixXi& F,
+//  const Eigen::MatrixXd& FN,
+//  const Eigen::MatrixXd& VN,
+//  const Eigen::MatrixXd& EN,
+//  const Eigen::MatrixXi & EMAP,
+//  const Eigen::MatrixXd & q,
+//  double & s,
+//  double & sqrd,
+//  int & i,
+//  Eigen::MatrixXd & c,
+//  Eigen::MatrixXd & n
+//)
+//{
+//  assert_is_VectorX("EMAP",EMAP);
+//  assert_is_VectorX("q",q);
+//  return igl::signed_distance_pseudonormal(tree, V, F, FN, VN, EN, EMAP, q, s, sqrd, i, c, n);
+//}, __doc_igl_signed_distance_pseudonormal,
+//py::arg("tree"), py::arg("V"), py::arg("F"), py::arg("FN"), py::arg("VN"), py::arg("EN"), py::arg("EMAP"), py::arg("q"), py::arg("s"), py::arg("sqrd"), py::arg("i"), py::arg("c"), py::arg("n"));
+
+//m.def("signed_distance_pseudonormal", []
+//(
+//  const AABB<Eigen::MatrixXd, 2> & tree,
+//  const Eigen::MatrixXd& V,
+//  const Eigen::MatrixXi& F,
+//  const Eigen::MatrixXd& FN,
+//  const Eigen::MatrixXd& VN,
+//  const Eigen::MatrixXd & q,
+//  double & s,
+//  double & sqrd,
+//  int & i,
+//  Eigen::MatrixXd & c,
+//  Eigen::MatrixXd & n
+//)
+//{
+//  assert_is_VectorX("q",q);
+//  return igl::signed_distance_pseudonormal(tree, V, F, FN, VN, q, s, sqrd, i, c, n);
+//}, __doc_igl_signed_distance_pseudonormal,
+//py::arg("tree"), py::arg("V"), py::arg("F"), py::arg("FN"), py::arg("VN"), py::arg("q"), py::arg("s"), py::arg("sqrd"), py::arg("i"), py::arg("c"), py::arg("n"));
+
+//m.def("signed_distance_winding_number", []
+//(
+//  AABB<Eigen::MatrixXd, 3> & tree,
+//  const Eigen::MatrixXd& V,
+//  const Eigen::MatrixXi& F,
+//  igl::WindingNumberAABB<Eigen::Vector3d> & hier,
+//  Eigen::RowVector3d & q
+//)
+//{
+//  return igl::signed_distance_winding_number(tree, V, F, hier, q);
+//}, __doc_igl_signed_distance_winding_number,
+//py::arg("tree"), py::arg("V"), py::arg("F"), py::arg("hier"), py::arg("q"));
+

+ 76 - 0
python/py_igl/py_slice_mask.cpp

@@ -0,0 +1,76 @@
+m.def("slice_mask", []
+(
+  const Eigen::MatrixXd& X,
+  const Eigen::Matrix<bool, Eigen::Dynamic, Eigen::Dynamic> & R,
+  const Eigen::Matrix<bool, Eigen::Dynamic, Eigen::Dynamic> & C,
+  Eigen::MatrixXd& Y
+)
+{
+  assert_is_VectorX("R",R);
+  assert_is_VectorX("C",C);
+  return igl::slice_mask(X, R, C, Y);
+}, __doc_igl_slice_mask,
+py::arg("X"), py::arg("R"), py::arg("C"), py::arg("Y"));
+
+m.def("slice_mask", []
+(
+  const Eigen::MatrixXd& X,
+  const Eigen::Matrix<bool, Eigen::Dynamic, Eigen::Dynamic> & R,
+  const int dim,
+  Eigen::MatrixXd& Y
+)
+{
+  assert_is_VectorX("R",R);
+  return igl::slice_mask(X, R, dim, Y);
+}, __doc_igl_slice_mask,
+py::arg("X"), py::arg("R"), py::arg("dim"), py::arg("Y"));
+
+m.def("slice_mask", []
+(
+  const Eigen::MatrixXi& X,
+  const Eigen::Matrix<bool, Eigen::Dynamic, Eigen::Dynamic> & R,
+  const Eigen::Matrix<bool, Eigen::Dynamic, Eigen::Dynamic> & C,
+  Eigen::MatrixXi& Y
+)
+{
+  assert_is_VectorX("R",R);
+  assert_is_VectorX("C",C);
+  return igl::slice_mask(X, R, C, Y);
+}, __doc_igl_slice_mask,
+py::arg("X"), py::arg("R"), py::arg("C"), py::arg("Y"));
+
+m.def("slice_mask", []
+(
+  const Eigen::MatrixXi& X,
+  const Eigen::Matrix<bool, Eigen::Dynamic, Eigen::Dynamic> & R,
+  const int dim,
+  Eigen::MatrixXi& Y
+)
+{
+  assert_is_VectorX("R",R);
+  return igl::slice_mask(X, R, dim, Y);
+}, __doc_igl_slice_mask,
+py::arg("X"), py::arg("R"), py::arg("dim"), py::arg("Y"));
+
+//m.def("slice_mask", []
+//(
+//  const Eigen::MatrixXd& X,
+//  Eigen::Array<bool, Eigen::Dynamic, 1> & R,
+//  Eigen::Array<bool, Eigen::Dynamic, 1> & C
+//)
+//{
+//  return igl::slice_mask(X, R, C);
+//}, __doc_igl_slice_mask,
+//py::arg("X"), py::arg("R"), py::arg("C"));
+
+//m.def("slice_mask", []
+//(
+//  const Eigen::MatrixXd& X,
+//  Eigen::Array<bool, Eigen::Dynamic, 1> & R,
+//  int dim
+//)
+//{
+//  return igl::slice_mask(X, R, dim);
+//}, __doc_igl_slice_mask,
+//py::arg("X"), py::arg("R"), py::arg("dim"));
+

+ 2 - 4
python/py_igl/py_slice_tets.cpp

@@ -13,11 +13,9 @@ m.def("slice_tets", []
   Eigen::VectorXd pl;
   if (plane.size() != 0)
     pl = plane;
-  assert_is_VectorX("J", J);
   Eigen::VectorXi Jv;
-  if (J.size() != 0)
-    Jv = J;
-  return igl::slice_tets(V, T, pl, U, G, Jv, BC);
+  igl::slice_tets(V, T, pl, U, G, Jv, BC);
+  J = Jv;
 }, __doc_igl_slice_tets,
 py::arg("V"), py::arg("T"), py::arg("plane"), py::arg("U"), py::arg("G"), py::arg("J"), py::arg("BC"));
 

+ 26 - 0
python/py_vector.cpp

@@ -129,6 +129,9 @@ py::class_<Type> bind_eigen_2(py::module &m, const char *name,
         .def("topRows", [](Type &m, const int& k) { return Type(m.topRows(k)); })
         .def("bottomRows", [](Type &m, const int& k) { return Type(m.bottomRows(k)); })
 
+        .def("setTopRows", [](Type &m, const int& k, const Type& v) { return Type(m.topRows(k) = v); })
+        .def("setBottomRows", [](Type &m, const int& k, const Type& v) { return Type(m.bottomRows(k) = v); })
+
         .def("topLeftCorner", [](Type &m, const int& p, const int&q) { return Type(m.topLeftCorner(p,q)); })
         .def("bottomLeftCorner", [](Type &m, const int& p, const int&q) { return Type(m.bottomLeftCorner(p,q)); })
         .def("topRightCorner", [](Type &m, const int& p, const int&q) { return Type(m.topRightCorner(p,q)); })
@@ -249,6 +252,26 @@ py::class_<Type> bind_eigen_2(py::module &m, const char *name,
         /* Comparison operators */
         .def(py::self == py::self)
         .def(py::self != py::self)
+        .def("__lt__", []
+        (const Type &a, const Scalar& b) -> Eigen::Matrix<bool,Eigen::Dynamic,Eigen::Dynamic>
+        {
+          return Eigen::Matrix<bool, Eigen::Dynamic, Eigen::Dynamic>(a.array() < b);
+        })
+        .def("__gt__", []
+        (const Type &a, const Scalar& b) -> Eigen::Matrix<bool,Eigen::Dynamic,Eigen::Dynamic>
+        {
+          return Eigen::Matrix<bool, Eigen::Dynamic, Eigen::Dynamic>(a.array() > b);
+        })
+        .def("__le__", []
+        (const Type &a, const Scalar& b) -> Eigen::Matrix<bool,Eigen::Dynamic,Eigen::Dynamic>
+        {
+          return Eigen::Matrix<bool, Eigen::Dynamic, Eigen::Dynamic>(a.array() <= b);
+        })
+        .def("__ge__", []
+        (const Type &a, const Scalar& b) -> Eigen::Matrix<bool,Eigen::Dynamic,Eigen::Dynamic>
+        {
+          return Eigen::Matrix<bool, Eigen::Dynamic, Eigen::Dynamic>(a.array() >= b);
+        })
 
         .def("transposeInPlace", [](Type &m) { m.transposeInPlace(); })
         /* Other transformations */
@@ -603,6 +626,9 @@ void python_export_vector(py::module &m) {
 //    py::implicitly_convertible<py::buffer, Eigen::MatrixXi>();
     //py::implicitly_convertible<double, Eigen::MatrixXi>();
 
+    /* Bindings for MatrixXb */
+    bind_eigen_2<Eigen::Matrix<bool,Eigen::Dynamic,Eigen::Dynamic> > (me, "MatrixXb");
+
     /* Bindings for MatrixXuc */
     bind_eigen_2<Eigen::Matrix<unsigned char,Eigen::Dynamic,Eigen::Dynamic> > (me, "MatrixXuc");
     // py::implicitly_convertible<py::buffer, Eigen::Matrix<unsigned char,Eigen::Dynamic,Eigen::Dynamic> >();

+ 5 - 2
python/scripts/generate_bindings.py

@@ -100,7 +100,7 @@ def map_parameter_types(name, cpp_type, parsed_types, errors, enum_types):
                 else:
                     result.append("MatrixXd&")
                 break
-            if t == "MatrixXi":
+            if t == "MatrixXi" or t == "VectorXi":
                 result.append("MatrixXi&")
                 break
             if t == "MatrixXd" or t == "VectorXd":
@@ -197,7 +197,10 @@ if __name__ == '__main__':
     path = os.path.dirname(__file__)
     if path != "":
         os.chdir(path)
-    shutil.rmtree("generated")
+    try:
+        shutil.rmtree("generated")
+    except:
+        pass # Ignore missing generated directory
     os.makedirs("generated/complete")
     os.mkdir("generated/partial")
 

+ 52 - 58
python/tutorial/704_SignedDistance.py

@@ -7,6 +7,7 @@ sys.path.insert(0, os.getcwd() + "/../")
 import pyigl as igl
 from iglhelpers import e2p
 import math
+
 TUTORIAL_SHARED_PATH = "../../tutorial/shared/"
 
 global V, F, T, tree, FN, VN, EN, E, EMAP, max_distance, slice_z, overlay
@@ -27,9 +28,19 @@ overlay = False
 
 viewer = igl.viewer.Viewer()
 
+
+def append_mesh(C_vis, F_vis, V_vis, V, F, color):
+    F_vis.conservativeResize(F_vis.rows() + F.rows(), 3)
+    # F_vis.setBottomRows(F.rows(), F + V_vis.rows())
+    V_vis.conservativeResize(V_vis.rows() + V.rows(), 3)
+    # V_vis.setBottomRows(V.rows(), V)
+    C_vis.conservativeResize(C_vis.rows() + V.rows(), 3)
+    # C_vis.setBottomRows(V.rows(), color)
+
+
 def update_visualization(viewer):
     global V, F, T, tree, FN, VN, EN, E, EMAP, max_distance, slice_z, overlay
-    plane = igl.eigen.MatrixXd([0.0, 0.0, 1.0, -((1-slice_z) * V.col(2).minCoeff() + slice_z * V.col(2).maxCoeff())])
+    plane = igl.eigen.MatrixXd([0.0, 0.0, 1.0, -((1 - slice_z) * V.col(2).minCoeff() + slice_z * V.col(2).maxCoeff())])
     V_vis = igl.eigen.MatrixXd()
     F_vis = igl.eigen.MatrixXi()
 
@@ -38,60 +49,47 @@ def update_visualization(viewer):
     bary = igl.eigen.SparseMatrixd()
     igl.slice_tets(V, T, plane, V_vis, F_vis, J, bary)
     max_l = 0.03
-#    while True:
-#        l = igl.eigen.MatrixXd()
-#        igl.edge_lengths(V_vis, F_vis, l)
-#        l /= (V_vis.colwise().maxCoeff() - V_vis.colwise().minCoeff()).norm()
-#        
-#        if l.maxCoeff() < max_l:
-#            break
-#        
-#        bad = e2p(l.rowwiseMaxCoeff())
-#        bad = bad > max_l
-#        F_vis_bad = igl.eigen.MatrixXi()
-#        F_vis_good = igl.eigen.MatrixXi()
-#        igl::slice_mask(F_vis, bad, 1, F_vis_bad);
-#        igl::slice_mask(F_vis, (bad!=true).eval(), 1, F_vis_good);
-#        igl.upsample(V_vis, F_vis_bad)
-#        F_vis = igl.cat(1, F_vis_bad, F_vis_good)
-
-
-#    #Compute signed distance
-#    S_vis = igl.eigen.MatrixXd()
-#    I = igl.eigen.MatrixXi()
-#    N = igl.eigen.MatrixXd()
-#    C = igl.eigen.MatrixXd()
-
-#    # Bunny is a watertight mesh so use pseudonormal for signing
-#    igl.signed_distance_pseudonormal(V_vis, V, F, tree, FN, VN, EN, EMAP, S_vis, I, C, N)
-
-#    # push to [0,1] range
-#    S_vis.array() = 0.5*(S_vis.array()/max_distance)+0.5;
-#    C_vis = igl.eigen.MatrixXi()
-#    # color without normalizing
-#    igl.parula(S_vis, False, C_vis)
-
-
-#    const auto & append_mesh = [&C_vis,&F_vis,&V_vis](const Eigen::MatrixXd & V, const Eigen::MatrixXi & F, const RowVector3d & color)
-
-#    F_vis.conservativeResize(F_vis.rows() + F.rows(), 3)
-#    F_vis.bottomRows(F.rows()) = F.array() + V_vis.rows()
-#    V_vis.conservativeResize(V_vis.rows() + V.rows(), 3)
-#    V_vis.bottomRows(V.rows()) = V
-#    C_vis.conservativeResize(C_vis.rows() + V.rows(), 3)
-#    C_vis.bottomRows(V.rows()).rowwise() = color
-
-#    if overlay:
-#        append_mesh(V, F, RowVector3d(0.8,0.8,0.8))
+    while True:
+        l = igl.eigen.MatrixXd()
+        igl.edge_lengths(V_vis, F_vis, l)
+        l /= (V_vis.colwiseMaxCoeff() - V_vis.colwiseMinCoeff()).norm()
+
+        if l.maxCoeff() < max_l:
+            break
+
+        bad = l.rowwiseMaxCoeff() > max_l
+        notbad = l.rowwiseMaxCoeff() <= max_l  # TODO replace by ~ operator
+        F_vis_bad = igl.eigen.MatrixXi()
+        F_vis_good = igl.eigen.MatrixXi()
+        igl.slice_mask(F_vis, bad, 1, F_vis_bad)
+        igl.slice_mask(F_vis, notbad, 1, F_vis_good)
+        igl.upsample(V_vis, F_vis_bad)
+        F_vis = igl.cat(1, F_vis_bad, F_vis_good)
+
+    # Compute signed distance
+    S_vis = igl.eigen.MatrixXd()
+    I = igl.eigen.MatrixXi()
+    N = igl.eigen.MatrixXd()
+    C = igl.eigen.MatrixXd()
+
+    # Bunny is a watertight mesh so use pseudonormal for signing
+    igl.signed_distance_pseudonormal(V_vis, V, F, tree, FN, VN, EN, EMAP, S_vis, I, C, N)
+
+    # push to [0,1] range
+    S_vis = 0.5 * (S_vis / max_distance) + 0.5
+    C_vis = igl.eigen.MatrixXd()
+    # color without normalizing
+    igl.parula(S_vis, False, C_vis)
+
+    if overlay:
+        append_mesh(C_vis, F_vis, V_vis, V, F, igl.eigen.MatrixXd([0.8, 0.8, 0.8]))
 
     viewer.data.clear()
     viewer.data.set_mesh(V_vis, F_vis)
-#    viewer.data.set_colors(C_vis)
+    viewer.data.set_colors(C_vis)
     viewer.core.lighting_factor = overlay
 
 
-
-
 def key_down(viewer, key, modifier):
     global slice_z, overlay
 
@@ -111,30 +109,26 @@ def key_down(viewer, key, modifier):
 print("Press [space] to toggle showing surface.")
 print("Press '.'/',' to push back/pull forward slicing plane.")
 
-#Load mesh: (V,T) tet-mesh of convex hull, F contains original surface triangles
+# Load mesh: (V,T) tet-mesh of convex hull, F contains original surface triangles
 igl.readMESH(TUTORIAL_SHARED_PATH + "bunny.mesh", V, T, F);
 
-#Call to point_mesh_squared_distance to determine bounds
+# Call to point_mesh_squared_distance to determine bounds
 sqrD = igl.eigen.MatrixXd()
 I = igl.eigen.MatrixXi()
 C = igl.eigen.MatrixXd()
 igl.point_mesh_squared_distance(V, V, F, sqrD, I, C)
 max_distance = math.sqrt(sqrD.maxCoeff())
 
-#Precompute signed distance AABB tree
+# Precompute signed distance AABB tree
 tree.init(V, F)
 
-#Precompute vertex, edge and face normals
+# Precompute vertex, edge and face normals
 igl.per_face_normals(V, F, FN)
 igl.per_vertex_normals(V, F, igl.PER_VERTEX_NORMALS_WEIGHTING_TYPE_ANGLE, FN, VN)
 igl.per_edge_normals(V, F, igl.PER_EDGE_NORMALS_WEIGHTING_TYPE_UNIFORM, FN, EN, E, EMAP)
 
-#Plot the generated mesh
+# Plot the generated mesh
 update_visualization(viewer);
 viewer.callback_key_down = key_down
 viewer.core.show_lines = False
 viewer.launch()
-
-
-
-