|
@@ -89,13 +89,13 @@ namespace igl
|
|
|
typedef typename DerivedF::Index Index;
|
|
|
Index count;
|
|
|
typedef std::vector<CGAL::Object> ObjectList;
|
|
|
- std::vector<ObjectList > F_objects;
|
|
|
+ // Using a vector here makes this **not** output sensitive
|
|
|
Triangles T;
|
|
|
typedef std::vector<Index> IndexList;
|
|
|
IndexList lIF;
|
|
|
- std::vector<bool> offensive;
|
|
|
- std::vector<Index> offending_index;
|
|
|
- std::vector<Index> offending;
|
|
|
+ // #F-long list of faces with intersections mapping to the order in
|
|
|
+ // which they were first found
|
|
|
+ std::map<Index,std::pair<Index,ObjectList> > offending;
|
|
|
// Make a short name for the edge map's key
|
|
|
typedef std::pair<Index,Index> EMK;
|
|
|
// Make a short name for the type stored at each edge, the edge map's
|
|
@@ -103,6 +103,7 @@ namespace igl
|
|
|
typedef std::vector<Index> EMV;
|
|
|
// Make a short name for the edge map
|
|
|
typedef std::map<EMK,EMV> EdgeMap;
|
|
|
+ // Maps edges of offending faces to all incident offending faces
|
|
|
EdgeMap edge2faces;
|
|
|
public:
|
|
|
RemeshSelfIntersectionsParam params;
|
|
@@ -139,8 +140,8 @@ namespace igl
|
|
|
// Inputs:
|
|
|
// A triangle in 3D
|
|
|
// B triangle in 3D
|
|
|
- // fa index of A in F (and F_objects)
|
|
|
- // fb index of A in F (and F_objects)
|
|
|
+ // fa index of A in F (and key into offending)
|
|
|
+ // fb index of A in F (and key into offending)
|
|
|
// Returns true only if A intersects B
|
|
|
//
|
|
|
inline bool intersect(
|
|
@@ -156,10 +157,10 @@ namespace igl
|
|
|
// Inputs:
|
|
|
// A triangle in 3D
|
|
|
// B triangle in 3D
|
|
|
- // fa index of A in F (and F_objects)
|
|
|
- // fb index of B in F (and F_objects)
|
|
|
- // va index of shared vertex in A (and F_objects)
|
|
|
- // vb index of shared vertex in B (and F_objects)
|
|
|
+ // fa index of A in F (and key into offending)
|
|
|
+ // fb index of B in F (and key into offending)
|
|
|
+ // va index of shared vertex in A (and key into offending)
|
|
|
+ // vb index of shared vertex in B (and key into offending)
|
|
|
//// Returns object of intersection (should be Segment or point)
|
|
|
// Returns true if intersection (besides shared point)
|
|
|
//
|
|
@@ -185,7 +186,8 @@ namespace igl
|
|
|
const Triangle_3 & A,
|
|
|
const Triangle_3 & B,
|
|
|
const Index fa,
|
|
|
- const Index fb);
|
|
|
+ const Index fb,
|
|
|
+ const std::vector<std::pair<Index,Index> > shared);
|
|
|
|
|
|
public:
|
|
|
// Callback function called during box self intersections test. Means
|
|
@@ -208,22 +210,13 @@ namespace igl
|
|
|
// A_objects_3 updated list of intersection objects for A
|
|
|
// Outputs:
|
|
|
// cdt Contrained delaunay triangulation in projected 2D plane
|
|
|
- inline void projected_delaunay(
|
|
|
- const Triangle_3 & A,
|
|
|
- const ObjectList & A_objects_3,
|
|
|
- CDT_plus_2 & cdt);
|
|
|
- // Getters:
|
|
|
public:
|
|
|
+ // Getters:
|
|
|
//const IndexList& get_lIF() const{ return lIF;}
|
|
|
static inline void box_intersect_static(
|
|
|
SelfIntersectMesh * SIM,
|
|
|
const Box &a,
|
|
|
const Box &b);
|
|
|
- // Annoying wrappers to conver from cgal to double or cgal
|
|
|
- static inline void to_output_type(const typename Kernel::FT & cgal,double & d);
|
|
|
- static inline void to_output_type(
|
|
|
- const typename CGAL::Epeck::FT & cgal,
|
|
|
- CGAL::Epeck::FT & d);
|
|
|
};
|
|
|
}
|
|
|
}
|
|
@@ -231,6 +224,7 @@ namespace igl
|
|
|
// Implementation
|
|
|
|
|
|
#include "mesh_to_cgal_triangle_list.h"
|
|
|
+#include "remesh_intersections.h"
|
|
|
|
|
|
#include <igl/REDRUM.h>
|
|
|
#include <igl/get_seconds.h>
|
|
@@ -322,11 +316,8 @@ inline igl::cgal::SelfIntersectMesh<
|
|
|
V(V),
|
|
|
F(F),
|
|
|
count(0),
|
|
|
- F_objects(F.rows()),
|
|
|
T(),
|
|
|
lIF(),
|
|
|
- offensive(F.rows(),false),
|
|
|
- offending_index(F.rows(),-1),
|
|
|
offending(),
|
|
|
edge2faces(),
|
|
|
params(params)
|
|
@@ -413,241 +404,7 @@ inline igl::cgal::SelfIntersectMesh<
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
- int NF_count = 0;
|
|
|
- // list of new faces, we'll fix F later
|
|
|
- vector<
|
|
|
- typename Eigen::Matrix<typename DerivedFF::Scalar,Dynamic,Dynamic>
|
|
|
- > NF(offending.size());
|
|
|
- // list of new vertices
|
|
|
- typedef vector<Point_3> Point_3List;
|
|
|
- Point_3List NV;
|
|
|
- Index NV_count = 0;
|
|
|
- vector<CDT_plus_2> cdt(offending.size());
|
|
|
- vector<Plane_3> P(offending.size());
|
|
|
- // Use map for *all* faces
|
|
|
- map<typename CDT_plus_2::Vertex_handle,Index> v2i;
|
|
|
- // Loop over offending triangles
|
|
|
- const size_t noff = offending.size();
|
|
|
-#ifdef IGL_SELFINTERSECTMESH_DEBUG
|
|
|
- double t_proj_del = 0;
|
|
|
-#endif
|
|
|
- // Unfortunately it looks like CGAL has trouble allocating memory when
|
|
|
- // multiple openmp threads are running. Crashes durring CDT...
|
|
|
-//# pragma omp parallel for if (noff>1000)
|
|
|
- for(Index o = 0;o<(Index)noff;o++)
|
|
|
- {
|
|
|
- // index in F
|
|
|
- const Index f = offending[o];
|
|
|
- {
|
|
|
-#ifdef IGL_SELFINTERSECTMESH_DEBUG
|
|
|
- const double t_before = get_seconds();
|
|
|
-#endif
|
|
|
- projected_delaunay(T[f],F_objects[f],cdt[o]);
|
|
|
-#ifdef IGL_SELFINTERSECTMESH_DEBUG
|
|
|
- t_proj_del += (get_seconds()-t_before);
|
|
|
-#endif
|
|
|
- }
|
|
|
- // Q: Is this also delaunay in 3D?
|
|
|
- // A: No, because the projection is affine and delaunay is not affine
|
|
|
- // invariant.
|
|
|
- // Q: Then, can't we first get the 2D delaunay triangulation, then lift it
|
|
|
- // to 3D and flip any offending edges?
|
|
|
- // Plane of projection (also used by projected_delaunay)
|
|
|
- P[o] = Plane_3(T[f].vertex(0),T[f].vertex(1),T[f].vertex(2));
|
|
|
- // Build index map
|
|
|
- {
|
|
|
- Index i=0;
|
|
|
- for(
|
|
|
- typename CDT_plus_2::Finite_vertices_iterator vit = cdt[o].finite_vertices_begin();
|
|
|
- vit != cdt[o].finite_vertices_end();
|
|
|
- ++vit)
|
|
|
- {
|
|
|
- if(i<3)
|
|
|
- {
|
|
|
- //cout<<T[f].vertex(i)<<
|
|
|
- // (T[f].vertex(i) == P[o].to_3d(vit->point())?" == ":" != ")<<
|
|
|
- // P[o].to_3d(vit->point())<<endl;
|
|
|
-#ifndef NDEBUG
|
|
|
- // I want to be sure that the original corners really show up as the
|
|
|
- // original corners of the CDT. I.e. I don't trust CGAL to maintain
|
|
|
- // the order
|
|
|
- assert(T[f].vertex(i) == P[o].to_3d(vit->point()));
|
|
|
-#endif
|
|
|
- // For first three, use original index in F
|
|
|
-//# pragma omp critical
|
|
|
- v2i[vit] = F(f,i);
|
|
|
- }else
|
|
|
- {
|
|
|
- const Point_3 vit_point_3 = P[o].to_3d(vit->point());
|
|
|
- // First look up each edge's neighbors to see if exact point has
|
|
|
- // already been added (This makes everything a bit quadratic)
|
|
|
- bool found = false;
|
|
|
- for(int e = 0; e<3 && !found;e++)
|
|
|
- {
|
|
|
- // Index of F's eth edge in V
|
|
|
- Index i = F(f,(e+1)%3);
|
|
|
- Index j = F(f,(e+2)%3);
|
|
|
- // Be sure that i<j
|
|
|
- if(i>j)
|
|
|
- {
|
|
|
- swap(i,j);
|
|
|
- }
|
|
|
- assert(edge2faces.count(EMK(i,j))==1);
|
|
|
- // loop over neighbors
|
|
|
- for(
|
|
|
- typename IndexList::const_iterator nit = edge2faces[EMK(i,j)].begin();
|
|
|
- nit != edge2faces[EMK(i,j)].end() && !found;
|
|
|
- nit++)
|
|
|
- {
|
|
|
- // don't consider self
|
|
|
- if(*nit == f)
|
|
|
- {
|
|
|
- continue;
|
|
|
- }
|
|
|
- // index of neighbor in offending (to find its cdt)
|
|
|
- Index no = offending_index[*nit];
|
|
|
- // Loop over vertices of that neighbor's cdt (might not have been
|
|
|
- // processed yet, but then it's OK because it'll just be empty)
|
|
|
- for(
|
|
|
- typename CDT_plus_2::Finite_vertices_iterator uit = cdt[no].finite_vertices_begin();
|
|
|
- uit != cdt[no].finite_vertices_end() && !found;
|
|
|
- ++uit)
|
|
|
- {
|
|
|
- if(vit_point_3 == P[no].to_3d(uit->point()))
|
|
|
- {
|
|
|
- assert(v2i.count(uit) == 1);
|
|
|
-//# pragma omp critical
|
|
|
- v2i[vit] = v2i[uit];
|
|
|
- found = true;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- if(!found)
|
|
|
- {
|
|
|
-//# pragma omp critical
|
|
|
- {
|
|
|
- v2i[vit] = V.rows()+NV_count;
|
|
|
- NV.push_back(vit_point_3);
|
|
|
- NV_count++;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- i++;
|
|
|
- }
|
|
|
- }
|
|
|
- {
|
|
|
- Index i = 0;
|
|
|
- // Resize to fit new number of triangles
|
|
|
- NF[o].resize(cdt[o].number_of_faces(),3);
|
|
|
-//# pragma omp atomic
|
|
|
- NF_count+=NF[o].rows();
|
|
|
- // Append new faces to NF
|
|
|
- for(
|
|
|
- typename CDT_plus_2::Finite_faces_iterator fit = cdt[o].finite_faces_begin();
|
|
|
- fit != cdt[o].finite_faces_end();
|
|
|
- ++fit)
|
|
|
- {
|
|
|
- NF[o](i,0) = v2i[fit->vertex(0)];
|
|
|
- NF[o](i,1) = v2i[fit->vertex(1)];
|
|
|
- NF[o](i,2) = v2i[fit->vertex(2)];
|
|
|
- i++;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-#ifdef IGL_SELFINTERSECTMESH_DEBUG
|
|
|
- cout<<"CDT: "<<tictoc()<<" "<<t_proj_del<<endl;
|
|
|
-#endif
|
|
|
-
|
|
|
- assert(NV_count == (Index)NV.size());
|
|
|
- // Build output
|
|
|
-#ifndef NDEBUG
|
|
|
- {
|
|
|
- Index off_count = 0;
|
|
|
- for(Index f = 0;f<F.rows();f++)
|
|
|
- {
|
|
|
- off_count+= (offensive[f]?1:0);
|
|
|
- }
|
|
|
- assert(off_count==(Index)offending.size());
|
|
|
- }
|
|
|
-#endif
|
|
|
- // Append faces
|
|
|
- FF.resize(F.rows()-offending.size()+NF_count,3);
|
|
|
- J.resize(FF.rows());
|
|
|
- // First append non-offending original faces
|
|
|
- // There's an Eigen way to do this in one line but I forget
|
|
|
- Index off = 0;
|
|
|
- for(Index f = 0;f<F.rows();f++)
|
|
|
- {
|
|
|
- if(!offensive[f])
|
|
|
- {
|
|
|
- FF.row(off) = F.row(f);
|
|
|
- J(off) = f;
|
|
|
- off++;
|
|
|
- }
|
|
|
- }
|
|
|
- assert(off == (Index)(F.rows()-offending.size()));
|
|
|
- // Now append replacement faces for offending faces
|
|
|
- for(Index o = 0;o<(Index)offending.size();o++)
|
|
|
- {
|
|
|
- FF.block(off,0,NF[o].rows(),3) = NF[o];
|
|
|
- J.block(off,0,NF[o].rows(),1).setConstant(offending[o]);
|
|
|
- off += NF[o].rows();
|
|
|
- }
|
|
|
- // Append vertices
|
|
|
- VV.resize(V.rows()+NV_count,3);
|
|
|
- VV.block(0,0,V.rows(),3) = V.template cast<typename DerivedVV::Scalar>();
|
|
|
- {
|
|
|
- Index i = 0;
|
|
|
- for(
|
|
|
- typename Point_3List::const_iterator nvit = NV.begin();
|
|
|
- nvit != NV.end();
|
|
|
- nvit++)
|
|
|
- {
|
|
|
- for(Index d = 0;d<3;d++)
|
|
|
- {
|
|
|
- const Point_3 & p = *nvit;
|
|
|
- // Don't convert via double if output type is same as Kernel
|
|
|
- to_output_type(p[d], VV(V.rows()+i,d));
|
|
|
- }
|
|
|
- i++;
|
|
|
- }
|
|
|
- }
|
|
|
- IM.resize(VV.rows(),1);
|
|
|
- map<Point_3,Index> vv2i;
|
|
|
- // Safe to check for duplicates using double for original vertices: if
|
|
|
- // incoming reps are different then the points are unique.
|
|
|
- for(Index v = 0;v<V.rows();v++)
|
|
|
- {
|
|
|
- const Point_3 p(V(v,0),V(v,1),V(v,2));
|
|
|
- if(vv2i.count(p)==0)
|
|
|
- {
|
|
|
- vv2i[p] = v;
|
|
|
- }
|
|
|
- assert(vv2i.count(p) == 1);
|
|
|
- IM(v) = vv2i[p];
|
|
|
- }
|
|
|
- // Must check for duplicates of new vertices using exact.
|
|
|
- {
|
|
|
- Index v = V.rows();
|
|
|
- for(
|
|
|
- typename Point_3List::const_iterator nvit = NV.begin();
|
|
|
- nvit != NV.end();
|
|
|
- nvit++)
|
|
|
- {
|
|
|
- const Point_3 & p = *nvit;
|
|
|
- if(vv2i.count(p)==0)
|
|
|
- {
|
|
|
- vv2i[p] = v;
|
|
|
- }
|
|
|
- assert(vv2i.count(p) == 1);
|
|
|
- IM(v) = vv2i[p];
|
|
|
- v++;
|
|
|
- }
|
|
|
- }
|
|
|
-#ifdef IGL_SELFINTERSECTMESH_DEBUG
|
|
|
- cout<<"Output + dupes: "<<tictoc()<<endl;
|
|
|
-#endif
|
|
|
+ remesh_intersections(V,F,T,offending,edge2faces,VV,FF,J,IM);
|
|
|
|
|
|
// Q: Does this give the same result as TETGEN?
|
|
|
// A: For the cow and beast, yes.
|
|
@@ -659,6 +416,7 @@ inline igl::cgal::SelfIntersectMesh<
|
|
|
// CGAL implementation on the beast takes 98 seconds but tetgen detection
|
|
|
// takes 14 seconds
|
|
|
|
|
|
+
|
|
|
}
|
|
|
|
|
|
|
|
@@ -683,28 +441,16 @@ inline void igl::cgal::SelfIntersectMesh<
|
|
|
{
|
|
|
using namespace std;
|
|
|
lIF.push_back(f);
|
|
|
- if(!offensive[f])
|
|
|
+ if(offending.count(f) == 0)
|
|
|
{
|
|
|
- offensive[f]=true;
|
|
|
- offending_index[f]=offending.size();
|
|
|
- offending.push_back(f);
|
|
|
- // Add to edge map
|
|
|
+ // first time marking, initialize with new id and empty list
|
|
|
+ const Index id = offending.size();
|
|
|
+ offending[f] = {id,{}};
|
|
|
for(Index e = 0; e<3;e++)
|
|
|
{
|
|
|
- // Index of F's eth edge in V
|
|
|
- Index i = F(f,(e+1)%3);
|
|
|
- Index j = F(f,(e+2)%3);
|
|
|
- // Be sure that i<j
|
|
|
- if(i>j)
|
|
|
- {
|
|
|
- swap(i,j);
|
|
|
- }
|
|
|
- // Create new list if there is no entry
|
|
|
- if(edge2faces.count(EMK(i,j))==0)
|
|
|
- {
|
|
|
- edge2faces[EMK(i,j)] = EMV();
|
|
|
- }
|
|
|
- // append to list
|
|
|
+ // append face to edge's list
|
|
|
+ Index i = F(f,(e+1)%3) < F(f,(e+2)%3) ? F(f,(e+1)%3) : F(f,(e+2)%3);
|
|
|
+ Index j = F(f,(e+1)%3) < F(f,(e+2)%3) ? F(f,(e+2)%3) : F(f,(e+1)%3);
|
|
|
edge2faces[EMK(i,j)].push_back(f);
|
|
|
}
|
|
|
}
|
|
@@ -769,14 +515,14 @@ inline bool igl::cgal::SelfIntersectMesh<
|
|
|
{
|
|
|
return false;
|
|
|
}
|
|
|
+ count_intersection(fa,fb);
|
|
|
if(!params.detect_only)
|
|
|
{
|
|
|
// Construct intersection
|
|
|
CGAL::Object result = CGAL::intersection(A,B);
|
|
|
- F_objects[fa].push_back(result);
|
|
|
- F_objects[fb].push_back(result);
|
|
|
+ offending[fa].second.push_back(result);
|
|
|
+ offending[fb].second.push_back(result);
|
|
|
}
|
|
|
- count_intersection(fa,fb);
|
|
|
return true;
|
|
|
}
|
|
|
|
|
@@ -858,43 +604,41 @@ inline bool igl::cgal::SelfIntersectMesh<
|
|
|
|
|
|
if(CGAL::do_intersect(sa,B))
|
|
|
{
|
|
|
+ // can't put count_intersection(fa,fb) here since we use intersect below
|
|
|
+ // and then it will be counted twice.
|
|
|
+ if(params.detect_only)
|
|
|
+ {
|
|
|
+ count_intersection(fa,fb);
|
|
|
+ return true;
|
|
|
+ }
|
|
|
CGAL::Object result = CGAL::intersection(sa,B);
|
|
|
if(const Point_3 * p = CGAL::object_cast<Point_3 >(&result))
|
|
|
{
|
|
|
- if(!params.detect_only)
|
|
|
- {
|
|
|
- // Single intersection --> segment from shared point to intersection
|
|
|
- CGAL::Object seg = CGAL::make_object(Segment_3(
|
|
|
- A.vertex(va),
|
|
|
- *p));
|
|
|
- F_objects[fa].push_back(seg);
|
|
|
- F_objects[fb].push_back(seg);
|
|
|
- }
|
|
|
+ // Single intersection --> segment from shared point to intersection
|
|
|
+ CGAL::Object seg = CGAL::make_object(Segment_3(
|
|
|
+ A.vertex(va),
|
|
|
+ *p));
|
|
|
count_intersection(fa,fb);
|
|
|
+ offending[fa].second.push_back(seg);
|
|
|
+ offending[fb].second.push_back(seg);
|
|
|
return true;
|
|
|
}else if(CGAL::object_cast<Segment_3 >(&result))
|
|
|
{
|
|
|
//cerr<<REDRUM("Coplanar at: "<<fa<<" & "<<fb<<" (single shared).")<<endl;
|
|
|
// Must be coplanar
|
|
|
- if(params.detect_only)
|
|
|
- {
|
|
|
- count_intersection(fa,fb);
|
|
|
- }else
|
|
|
- {
|
|
|
- // WRONG:
|
|
|
- //// Segment intersection --> triangle from shared point to intersection
|
|
|
- //CGAL::Object tri = CGAL::make_object(Triangle_3(
|
|
|
- // A.vertex(va),
|
|
|
- // s->vertex(0),
|
|
|
- // s->vertex(1)));
|
|
|
- //F_objects[fa].push_back(tri);
|
|
|
- //F_objects[fb].push_back(tri);
|
|
|
- //count_intersection(fa,fb);
|
|
|
- // Need to do full test. Intersection could be a general poly.
|
|
|
- bool test = intersect(A,B,fa,fb);
|
|
|
- ((void)test);
|
|
|
- assert(test);
|
|
|
- }
|
|
|
+ // WRONG:
|
|
|
+ //// Segment intersection --> triangle from shared point to intersection
|
|
|
+ //CGAL::Object tri = CGAL::make_object(Triangle_3(
|
|
|
+ // A.vertex(va),
|
|
|
+ // s->vertex(0),
|
|
|
+ // s->vertex(1)));
|
|
|
+ //F_objects[fa].push_back(tri);
|
|
|
+ //F_objects[fb].push_back(tri);
|
|
|
+ //count_intersection(fa,fb);
|
|
|
+ // Need to do full test. Intersection could be a general poly.
|
|
|
+ bool test = intersect(A,B,fa,fb);
|
|
|
+ ((void)test);
|
|
|
+ assert(test && "intersect should agree with do_intersect");
|
|
|
return true;
|
|
|
}else
|
|
|
{
|
|
@@ -928,60 +672,122 @@ inline bool igl::cgal::SelfIntersectMesh<
|
|
|
const Triangle_3 & A,
|
|
|
const Triangle_3 & B,
|
|
|
const Index fa,
|
|
|
- const Index fb)
|
|
|
+ const Index fb,
|
|
|
+ const std::vector<std::pair<Index,Index> > shared)
|
|
|
{
|
|
|
using namespace std;
|
|
|
- // Cheaper way to do this than calling do_intersect?
|
|
|
+
|
|
|
+ // must be co-planar
|
|
|
if(
|
|
|
- // Can only have an intersection if co-planar
|
|
|
- (A.supporting_plane() == B.supporting_plane() ||
|
|
|
- A.supporting_plane() == B.supporting_plane().opposite()) &&
|
|
|
- CGAL::do_intersect(A,B))
|
|
|
+ A.supporting_plane() != B.supporting_plane() &&
|
|
|
+ A.supporting_plane() != B.supporting_plane().opposite())
|
|
|
{
|
|
|
- // Construct intersection
|
|
|
- try
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ // Since A and B are non-degenerate the intersection must be a polygon
|
|
|
+ // (triangle). Either
|
|
|
+ // - the vertex of A (B) opposite the shared edge of lies on B (A), or
|
|
|
+ // - an edge of A intersects and edge of B without sharing a vertex
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ // Determine if the vertex opposite edge (a0,a1) in triangle A lies in
|
|
|
+ // (intersects) triangle B
|
|
|
+ const auto & opposite_point_inside = [](
|
|
|
+ const Triangle_3 & A, const Index a0, const Index a1, const Triangle_3 & B)
|
|
|
+ -> bool
|
|
|
+ {
|
|
|
+ // get opposite index
|
|
|
+ Index a2 = -1;
|
|
|
+ for(int c = 0;c<3;c++)
|
|
|
{
|
|
|
- // This can fail for Epick but not Epeck
|
|
|
- CGAL::Object result = CGAL::intersection(A,B);
|
|
|
- if(!result.empty())
|
|
|
+ if(c != a0 && c != a1)
|
|
|
{
|
|
|
- if(CGAL::object_cast<Segment_3 >(&result))
|
|
|
- {
|
|
|
- // not coplanar
|
|
|
- return false;
|
|
|
- } else if(CGAL::object_cast<Point_3 >(&result))
|
|
|
- {
|
|
|
- // this "shouldn't" happen but does for inexact
|
|
|
- return false;
|
|
|
- } else
|
|
|
- {
|
|
|
- if(!params.detect_only)
|
|
|
- {
|
|
|
- // Triangle object
|
|
|
- F_objects[fa].push_back(result);
|
|
|
- F_objects[fb].push_back(result);
|
|
|
- }
|
|
|
- count_intersection(fa,fb);
|
|
|
- //cerr<<REDRUM("Coplanar at: "<<fa<<" & "<<fb<<" (double shared).")<<endl;
|
|
|
- return true;
|
|
|
- }
|
|
|
- }else
|
|
|
+ a2 = c;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ assert(a2 != -1);
|
|
|
+ bool ret = CGAL::do_intersect(A.vertex(a2),B);
|
|
|
+ //cout<<"opposite_point_inside: "<<ret<<endl;
|
|
|
+ return ret;
|
|
|
+ };
|
|
|
+
|
|
|
+ // Determine if edge opposite vertex va in triangle A intersects edge
|
|
|
+ // opposite vertex vb in triangle B.
|
|
|
+ const auto & opposite_edges_intersect = [](
|
|
|
+ const Triangle_3 & A, const Index va,
|
|
|
+ const Triangle_3 & B, const Index vb) -> bool
|
|
|
+ {
|
|
|
+ Segment_3 sa( A.vertex((va+1)%3), A.vertex((va+2)%3));
|
|
|
+ Segment_3 sb( B.vertex((vb+1)%3), B.vertex((vb+2)%3));
|
|
|
+ //cout<<sa<<endl;
|
|
|
+ //cout<<sb<<endl;
|
|
|
+ bool ret = CGAL::do_intersect(sa,sb);
|
|
|
+ //cout<<"opposite_edges_intersect: "<<ret<<endl;
|
|
|
+ return ret;
|
|
|
+ };
|
|
|
+
|
|
|
+
|
|
|
+ if(
|
|
|
+ !opposite_point_inside(A,shared[0].first,shared[1].first,B) &&
|
|
|
+ !opposite_point_inside(B,shared[0].second,shared[1].second,A) &&
|
|
|
+ !opposite_edges_intersect(A,shared[0].first,B,shared[1].second) &&
|
|
|
+ !opposite_edges_intersect(A,shared[1].first,B,shared[0].second))
|
|
|
+ {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+
|
|
|
+ // there is an intersection indeed
|
|
|
+ count_intersection(fa,fb);
|
|
|
+ if(params.detect_only)
|
|
|
+ {
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ // Construct intersection
|
|
|
+ try
|
|
|
+ {
|
|
|
+ // This can fail for Epick but not Epeck
|
|
|
+ CGAL::Object result = CGAL::intersection(A,B);
|
|
|
+ if(!result.empty())
|
|
|
+ {
|
|
|
+ if(CGAL::object_cast<Segment_3 >(&result))
|
|
|
+ {
|
|
|
+ // not coplanar
|
|
|
+ assert(false &&
|
|
|
+ "Co-planar non-degenerate triangles should intersect over triangle");
|
|
|
+ return false;
|
|
|
+ } else if(CGAL::object_cast<Point_3 >(&result))
|
|
|
{
|
|
|
- // CGAL::intersection is disagreeing with do_intersect
|
|
|
+ // this "shouldn't" happen but does for inexact
|
|
|
+ assert(false &&
|
|
|
+ "Co-planar non-degenerate triangles should intersect over triangle");
|
|
|
return false;
|
|
|
+ } else
|
|
|
+ {
|
|
|
+ // Triangle object
|
|
|
+ offending[fa].second.push_back(result);
|
|
|
+ offending[fb].second.push_back(result);
|
|
|
+ //cerr<<REDRUM("Coplanar at: "<<fa<<" & "<<fb<<" (double shared).")<<endl;
|
|
|
+ return true;
|
|
|
}
|
|
|
- }catch(...)
|
|
|
+ }else
|
|
|
{
|
|
|
- // This catches some cgal assertion:
|
|
|
- // CGAL error: assertion violation!
|
|
|
- // Expression : is_finite(d)
|
|
|
- // File : /opt/local/include/CGAL/GMP/Gmpq_type.h
|
|
|
- // Line : 132
|
|
|
- // Explanation:
|
|
|
- // But only if NDEBUG is not defined, otherwise there's an uncaught
|
|
|
- // "Floating point exception: 8" SIGFPE
|
|
|
+ // CGAL::intersection is disagreeing with do_intersect
|
|
|
+ assert(false && "CGAL::intersection should agree with predicate tests");
|
|
|
return false;
|
|
|
}
|
|
|
+ }catch(...)
|
|
|
+ {
|
|
|
+ // This catches some cgal assertion:
|
|
|
+ // CGAL error: assertion violation!
|
|
|
+ // Expression : is_finite(d)
|
|
|
+ // File : /opt/local/include/CGAL/GMP/Gmpq_type.h
|
|
|
+ // Line : 132
|
|
|
+ // Explanation:
|
|
|
+ // But only if NDEBUG is not defined, otherwise there's an uncaught
|
|
|
+ // "Floating point exception: 8" SIGFPE
|
|
|
+ return false;
|
|
|
}
|
|
|
// No intersection.
|
|
|
return false;
|
|
@@ -1030,9 +836,8 @@ inline void igl::cgal::SelfIntersectMesh<
|
|
|
// Number of geometrically shared vertices (*not* including combinatorially
|
|
|
// shared)
|
|
|
Index geo_shared_vertices = 0;
|
|
|
- // Keep track of shared vertex indices (we only handles single shared
|
|
|
- // vertices as a special case, so just need last/first/only ones)
|
|
|
- Index va=-1,vb=-1;
|
|
|
+ // Keep track of shared vertex indices
|
|
|
+ std::vector<std::pair<Index,Index> > shared;
|
|
|
Index ea,eb;
|
|
|
for(ea=0;ea<3;ea++)
|
|
|
{
|
|
@@ -1041,25 +846,25 @@ inline void igl::cgal::SelfIntersectMesh<
|
|
|
if(F(fa,ea) == F(fb,eb))
|
|
|
{
|
|
|
comb_shared_vertices++;
|
|
|
- va = ea;
|
|
|
- vb = eb;
|
|
|
+ shared.emplace_back(ea,eb);
|
|
|
}else if(A.vertex(ea) == B.vertex(eb))
|
|
|
{
|
|
|
geo_shared_vertices++;
|
|
|
- va = ea;
|
|
|
- vb = eb;
|
|
|
+ shared.emplace_back(ea,eb);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
const Index total_shared_vertices = comb_shared_vertices + geo_shared_vertices;
|
|
|
if(comb_shared_vertices== 3)
|
|
|
{
|
|
|
+ assert(shared.size() == 3);
|
|
|
//// Combinatorially duplicate face, these should be removed by preprocessing
|
|
|
//cerr<<REDRUM("Facets "<<fa<<" and "<<fb<<" are combinatorial duplicates")<<endl;
|
|
|
goto done;
|
|
|
}
|
|
|
if(total_shared_vertices== 3)
|
|
|
{
|
|
|
+ assert(shared.size() == 3);
|
|
|
//// Geometrically duplicate face, these should be removed by preprocessing
|
|
|
//cerr<<REDRUM("Facets "<<fa<<" and "<<fb<<" are geometrical duplicates")<<endl;
|
|
|
goto done;
|
|
@@ -1081,6 +886,7 @@ inline void igl::cgal::SelfIntersectMesh<
|
|
|
|
|
|
if(total_shared_vertices == 2)
|
|
|
{
|
|
|
+ assert(shared.size() == 2);
|
|
|
// Q: What about coplanar?
|
|
|
//
|
|
|
// o o
|
|
@@ -1089,19 +895,17 @@ inline void igl::cgal::SelfIntersectMesh<
|
|
|
// | /\ |
|
|
|
// |/ \|
|
|
|
// o----o
|
|
|
- double_shared_vertex(A,B,fa,fb);
|
|
|
+ double_shared_vertex(A,B,fa,fb,shared);
|
|
|
|
|
|
goto done;
|
|
|
}
|
|
|
assert(total_shared_vertices<=1);
|
|
|
if(total_shared_vertices==1)
|
|
|
{
|
|
|
- assert(va>=0 && va<3);
|
|
|
- assert(vb>=0 && vb<3);
|
|
|
//#ifndef NDEBUG
|
|
|
// CGAL::Object result =
|
|
|
//#endif
|
|
|
- single_shared_vertex(A,B,fa,fb,va,vb);
|
|
|
+ single_shared_vertex(A,B,fa,fb,shared[0].first,shared[0].second);
|
|
|
//#ifndef NDEBUG
|
|
|
// if(!CGAL::object_cast<Segment_3 >(&result))
|
|
|
// {
|
|
@@ -1130,142 +934,5 @@ done:
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
-// Compute 2D delaunay triangulation of a given 3d triangle and a list of
|
|
|
-// intersection objects (points,segments,triangles). CGAL uses an affine
|
|
|
-// projection rather than an isometric projection, so we're not guaranteed
|
|
|
-// that the 2D delaunay triangulation here will be a delaunay triangulation
|
|
|
-// in 3D.
|
|
|
-//
|
|
|
-// Inputs:
|
|
|
-// A triangle in 3D
|
|
|
-// A_objects_3 updated list of intersection objects for A
|
|
|
-// Outputs:
|
|
|
-// cdt Contrained delaunay triangulation in projected 2D plane
|
|
|
-template <
|
|
|
- typename Kernel,
|
|
|
- typename DerivedV,
|
|
|
- typename DerivedF,
|
|
|
- typename DerivedVV,
|
|
|
- typename DerivedFF,
|
|
|
- typename DerivedIF,
|
|
|
- typename DerivedJ,
|
|
|
- typename DerivedIM>
|
|
|
-inline void igl::cgal::SelfIntersectMesh<
|
|
|
- Kernel,
|
|
|
- DerivedV,
|
|
|
- DerivedF,
|
|
|
- DerivedVV,
|
|
|
- DerivedFF,
|
|
|
- DerivedIF,
|
|
|
- DerivedJ,
|
|
|
- DerivedIM>::projected_delaunay(
|
|
|
- const Triangle_3 & A,
|
|
|
- const ObjectList & A_objects_3,
|
|
|
- CDT_plus_2 & cdt)
|
|
|
-{
|
|
|
- using namespace std;
|
|
|
- // http://www.cgal.org/Manual/3.2/doc_html/cgal_manual/Triangulation_2/Chapter_main.html#Section_2D_Triangulations_Constrained_Plus
|
|
|
- // Plane of triangle A
|
|
|
- Plane_3 P(A.vertex(0),A.vertex(1),A.vertex(2));
|
|
|
- // Insert triangle into vertices
|
|
|
- typename CDT_plus_2::Vertex_handle corners[3];
|
|
|
- for(Index i = 0;i<3;i++)
|
|
|
- {
|
|
|
- corners[i] = cdt.insert(P.to_2d(A.vertex(i)));
|
|
|
- }
|
|
|
- // Insert triangle edges as constraints
|
|
|
- for(Index i = 0;i<3;i++)
|
|
|
- {
|
|
|
- cdt.insert_constraint( corners[(i+1)%3], corners[(i+2)%3]);
|
|
|
- }
|
|
|
- // Insert constraints for intersection objects
|
|
|
- for( const auto & obj : A_objects_3)
|
|
|
- {
|
|
|
- if(const Segment_3 *iseg = CGAL::object_cast<Segment_3 >(&obj))
|
|
|
- {
|
|
|
- // Add segment constraint
|
|
|
- cdt.insert_constraint(P.to_2d(iseg->vertex(0)),P.to_2d(iseg->vertex(1)));
|
|
|
- }else if(const Point_3 *ipoint = CGAL::object_cast<Point_3 >(&obj))
|
|
|
- {
|
|
|
- // Add point
|
|
|
- cdt.insert(P.to_2d(*ipoint));
|
|
|
- } else if(const Triangle_3 *itri = CGAL::object_cast<Triangle_3 >(&obj))
|
|
|
- {
|
|
|
- // Add 3 segment constraints
|
|
|
- cdt.insert_constraint(P.to_2d(itri->vertex(0)),P.to_2d(itri->vertex(1)));
|
|
|
- cdt.insert_constraint(P.to_2d(itri->vertex(1)),P.to_2d(itri->vertex(2)));
|
|
|
- cdt.insert_constraint(P.to_2d(itri->vertex(2)),P.to_2d(itri->vertex(0)));
|
|
|
- } else if(const std::vector<Point_3 > *polyp =
|
|
|
- CGAL::object_cast< std::vector<Point_3 > >(&obj))
|
|
|
- {
|
|
|
- //cerr<<REDRUM("Poly...")<<endl;
|
|
|
- const std::vector<Point_3 > & poly = *polyp;
|
|
|
- const Index m = poly.size();
|
|
|
- assert(m>=2);
|
|
|
- for(Index p = 0;p<m;p++)
|
|
|
- {
|
|
|
- const Index np = (p+1)%m;
|
|
|
- cdt.insert_constraint(P.to_2d(poly[p]),P.to_2d(poly[np]));
|
|
|
- }
|
|
|
- }else
|
|
|
- {
|
|
|
- cerr<<REDRUM("What is this object?!")<<endl;
|
|
|
- assert(false);
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-template <
|
|
|
- typename Kernel,
|
|
|
- typename DerivedV,
|
|
|
- typename DerivedF,
|
|
|
- typename DerivedVV,
|
|
|
- typename DerivedFF,
|
|
|
- typename DerivedIF,
|
|
|
- typename DerivedJ,
|
|
|
- typename DerivedIM>
|
|
|
-inline
|
|
|
-void
|
|
|
-igl::cgal::SelfIntersectMesh<
|
|
|
- Kernel,
|
|
|
- DerivedV,
|
|
|
- DerivedF,
|
|
|
- DerivedVV,
|
|
|
- DerivedFF,
|
|
|
- DerivedIF,
|
|
|
- DerivedJ,
|
|
|
- DerivedIM>::to_output_type(
|
|
|
- const typename Kernel::FT & cgal,
|
|
|
- double & d)
|
|
|
-{
|
|
|
- d = CGAL::to_double(cgal);
|
|
|
-}
|
|
|
-
|
|
|
-template <
|
|
|
- typename Kernel,
|
|
|
- typename DerivedV,
|
|
|
- typename DerivedF,
|
|
|
- typename DerivedVV,
|
|
|
- typename DerivedFF,
|
|
|
- typename DerivedIF,
|
|
|
- typename DerivedJ,
|
|
|
- typename DerivedIM>
|
|
|
-inline
|
|
|
-void
|
|
|
-igl::cgal::SelfIntersectMesh<
|
|
|
- Kernel,
|
|
|
- DerivedV,
|
|
|
- DerivedF,
|
|
|
- DerivedVV,
|
|
|
- DerivedFF,
|
|
|
- DerivedIF,
|
|
|
- DerivedJ,
|
|
|
- DerivedIM>::to_output_type(
|
|
|
- const typename CGAL::Epeck::FT & cgal,
|
|
|
- CGAL::Epeck::FT & d)
|
|
|
-{
|
|
|
- d = cgal;
|
|
|
-}
|
|
|
-
|
|
|
#endif
|
|
|
|