|
@@ -1,2296 +0,0 @@
|
|
|
-// This file is part of libigl, a simple c++ geometry processing library.
|
|
|
-//
|
|
|
-// Copyright (C) 2014 Daniele Panozzo <daniele.panozzo@gmail.com>, Olga Diamanti <olga.diam@gmail.com>
|
|
|
-//
|
|
|
-// This Source Code Form is subject to the terms of the Mozilla Public License
|
|
|
-// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
|
|
-// obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
-
|
|
|
-#include <igl/comiso/miq.h>
|
|
|
-#include <igl/local_basis.h>
|
|
|
-#include <igl/triangle_triangle_adjacency.h>
|
|
|
-
|
|
|
-// includes for VertexIndexing
|
|
|
-#include <igl/HalfEdgeIterator.h>
|
|
|
-#include <igl/is_border_vertex.h>
|
|
|
-#include <igl/vertex_triangle_adjacency.h>
|
|
|
-
|
|
|
-
|
|
|
-// includes for poissonSolver
|
|
|
-#include <gmm/gmm.h>
|
|
|
-#include <CoMISo/Solver/ConstrainedSolver.hh>
|
|
|
-#include <CoMISo/Solver/MISolver.hh>
|
|
|
-#include <CoMISo/Solver/GMM_Tools.hh>
|
|
|
-#include <igl/doublearea.h>
|
|
|
-#include <igl/per_face_normals.h>
|
|
|
-
|
|
|
-//
|
|
|
-#include <igl/cross_field_missmatch.h>
|
|
|
-#include <igl/comb_frame_field.h>
|
|
|
-#include <igl/comb_cross_field.h>
|
|
|
-#include <igl/cut_mesh_from_singularities.h>
|
|
|
-#include <igl/find_cross_field_singularities.h>
|
|
|
-#include <igl/compute_frame_field_bisectors.h>
|
|
|
-#include <igl/rotate_vectors.h>
|
|
|
-
|
|
|
-#define DEBUGPRINT 0
|
|
|
-
|
|
|
-
|
|
|
-namespace igl {
|
|
|
-
|
|
|
- class SparseMatrixData{
|
|
|
- protected:
|
|
|
- unsigned int m_nrows;
|
|
|
- unsigned int m_ncols;
|
|
|
- std::vector<unsigned int> m_rowind;
|
|
|
- std::vector<unsigned int> m_colind;
|
|
|
- std::vector<double> m_vals;
|
|
|
-
|
|
|
- public:
|
|
|
- unsigned int nrows() { return m_nrows ; }
|
|
|
- unsigned int ncols() { return m_ncols ; }
|
|
|
- unsigned int nentries() { return m_vals.size(); }
|
|
|
- std::vector<unsigned int>& rowind() { return m_rowind ; }
|
|
|
- std::vector<unsigned int>& colind() { return m_colind ; }
|
|
|
- std::vector<double>& vals() { return m_vals ; }
|
|
|
-
|
|
|
- // create an empty matrix with a fixed number of rows
|
|
|
- IGL_INLINE SparseMatrixData()
|
|
|
- {
|
|
|
- initialize(0,0);
|
|
|
- }
|
|
|
-
|
|
|
- // create an empty matrix with a fixed number of rows
|
|
|
- IGL_INLINE void initialize(int nr, int nc) {
|
|
|
- assert(nr >= 0 && nc >=0);
|
|
|
- m_nrows = nr;
|
|
|
- m_ncols = nc;
|
|
|
-
|
|
|
- m_rowind.resize(0);
|
|
|
- m_colind.resize(0);
|
|
|
- m_vals.resize(0);
|
|
|
- }
|
|
|
-
|
|
|
- // add a nonzero entry to the matrix
|
|
|
- // no checks are done for coinciding entries
|
|
|
- // the interpretation of the repeated entries (replace or add)
|
|
|
- // depends on how the actual sparse matrix datastructure is constructed
|
|
|
-
|
|
|
- IGL_INLINE void addEntryCmplx(unsigned int i, unsigned int j, std::complex<double> val) {
|
|
|
- m_rowind.push_back(2*i); m_colind.push_back(2*j); m_vals.push_back( val.real());
|
|
|
- m_rowind.push_back(2*i); m_colind.push_back(2*j+1); m_vals.push_back(-val.imag());
|
|
|
- m_rowind.push_back(2*i+1); m_colind.push_back(2*j); m_vals.push_back( val.imag());
|
|
|
- m_rowind.push_back(2*i+1); m_colind.push_back(2*j+1); m_vals.push_back( val.real());
|
|
|
- }
|
|
|
-
|
|
|
- IGL_INLINE void addEntryReal(unsigned int i, unsigned int j, double val) {
|
|
|
- m_rowind.push_back(i); m_colind.push_back(j); m_vals.push_back(val);
|
|
|
- }
|
|
|
-
|
|
|
- IGL_INLINE virtual ~SparseMatrixData() {
|
|
|
- }
|
|
|
-
|
|
|
- };
|
|
|
-
|
|
|
- // a small class to manage storage for matrix data
|
|
|
- // not using stl vectors: want to make all memory management
|
|
|
- // explicit to avoid hidden automatic reallocation
|
|
|
- // TODO: redo with STL vectors but with explicit mem. management
|
|
|
-
|
|
|
- class SparseSystemData {
|
|
|
- private:
|
|
|
- // matrix representation, A[rowind[i],colind[i]] = vals[i]
|
|
|
- // right-hand side
|
|
|
- SparseMatrixData m_A;
|
|
|
- double *m_b;
|
|
|
- double *m_x;
|
|
|
-
|
|
|
- public:
|
|
|
- IGL_INLINE SparseMatrixData& A() { return m_A; }
|
|
|
- IGL_INLINE double* b() { return m_b ; }
|
|
|
- IGL_INLINE double* x() { return m_x ; }
|
|
|
- IGL_INLINE unsigned int nrows() { return m_A.nrows(); }
|
|
|
-
|
|
|
- public:
|
|
|
-
|
|
|
- IGL_INLINE SparseSystemData(): m_A(), m_b(NULL), m_x(NULL){ }
|
|
|
-
|
|
|
- IGL_INLINE void initialize(unsigned int nr, unsigned int nc) {
|
|
|
- m_A.initialize(nr,nc);
|
|
|
- m_b = new double[nr];
|
|
|
- m_x = new double[nr];
|
|
|
- assert(m_b);
|
|
|
- std::fill( m_b, m_b+nr, 0.);
|
|
|
- }
|
|
|
-
|
|
|
- IGL_INLINE void addRHSCmplx(unsigned int i, std::complex<double> val) {
|
|
|
- assert( 2*i+1 < m_A.nrows());
|
|
|
- m_b[2*i] += val.real(); m_b[2*i+1] += val.imag();
|
|
|
- }
|
|
|
-
|
|
|
- IGL_INLINE void setRHSCmplx(unsigned int i, std::complex<double> val) {
|
|
|
- assert( 2*i+1 < m_A.nrows());
|
|
|
- m_b[2*i] = val.real(); m_b[2*i+1] = val.imag();
|
|
|
- }
|
|
|
-
|
|
|
- IGL_INLINE std::complex<double> getRHSCmplx(unsigned int i) {
|
|
|
- assert( 2*i+1 < m_A.nrows());
|
|
|
- return std::complex<double>( m_b[2*i], m_b[2*i+1]);
|
|
|
- }
|
|
|
-
|
|
|
- IGL_INLINE double getRHSReal(unsigned int i) {
|
|
|
- assert( i < m_A.nrows());
|
|
|
- return m_b[i];
|
|
|
- }
|
|
|
-
|
|
|
- IGL_INLINE std::complex<double> getXCmplx(unsigned int i) {
|
|
|
- assert( 2*i+1 < m_A.nrows());
|
|
|
- return std::complex<double>( m_x[2*i], m_x[2*i+1]);
|
|
|
- }
|
|
|
-
|
|
|
- IGL_INLINE void cleanMem() {
|
|
|
- //m_A.cleanup();
|
|
|
- delete [] m_b;
|
|
|
- delete [] m_x;
|
|
|
- }
|
|
|
-
|
|
|
- IGL_INLINE virtual ~SparseSystemData() {
|
|
|
- delete [] m_b;
|
|
|
- delete [] m_x;
|
|
|
- }
|
|
|
- };
|
|
|
-
|
|
|
- struct SeamInfo
|
|
|
- {
|
|
|
- int v0,v0p,v1,v1p;
|
|
|
- int integerVar;
|
|
|
- unsigned char MMatch;
|
|
|
-
|
|
|
- IGL_INLINE SeamInfo(int _v0,
|
|
|
- int _v1,
|
|
|
- int _v0p,
|
|
|
- int _v1p,
|
|
|
- int _MMatch,
|
|
|
- int _integerVar);
|
|
|
-
|
|
|
- IGL_INLINE SeamInfo(const SeamInfo &S1);
|
|
|
- };
|
|
|
-
|
|
|
- struct MeshSystemInfo
|
|
|
- {
|
|
|
- ///total number of scalar variables
|
|
|
- int num_scalar_variables;
|
|
|
- ////number of vertices variables
|
|
|
- int num_vert_variables;
|
|
|
- ///num of integer for cuts
|
|
|
- int num_integer_cuts;
|
|
|
- ///this are used for drawing purposes
|
|
|
- std::vector<SeamInfo> EdgeSeamInfo;
|
|
|
-#if 0
|
|
|
- ///this are values of integer variables after optimization
|
|
|
- std::vector<int> IntegerValues;
|
|
|
-#endif
|
|
|
- };
|
|
|
-
|
|
|
-
|
|
|
- template <typename DerivedV, typename DerivedF>
|
|
|
- class VertexIndexing
|
|
|
- {
|
|
|
- public:
|
|
|
- // Input:
|
|
|
- const Eigen::PlainObjectBase<DerivedV> &V;
|
|
|
- const Eigen::PlainObjectBase<DerivedF> &F;
|
|
|
- const Eigen::PlainObjectBase<DerivedF> &TT;
|
|
|
- const Eigen::PlainObjectBase<DerivedF> &TTi;
|
|
|
- // const Eigen::PlainObjectBase<DerivedV> &PD1;
|
|
|
- // const Eigen::PlainObjectBase<DerivedV> &PD2;
|
|
|
-
|
|
|
- const Eigen::Matrix<int, Eigen::Dynamic, 3> &Handle_MMatch;
|
|
|
- // const Eigen::Matrix<int, Eigen::Dynamic, 1> &Handle_Singular; // bool
|
|
|
- // const Eigen::Matrix<int, Eigen::Dynamic, 1> &Handle_SingularDegree; // vertex;
|
|
|
- const Eigen::Matrix<int, Eigen::Dynamic, 3> &Handle_Seams; // 3 bool
|
|
|
-
|
|
|
-
|
|
|
- ///this handle for mesh TODO: move with the other global variables
|
|
|
- MeshSystemInfo Handle_SystemInfo;
|
|
|
-
|
|
|
- // Output:
|
|
|
- ///this maps the integer for edge - face
|
|
|
- Eigen::MatrixXi Handle_Integer; // TODO: remove it is useless
|
|
|
-
|
|
|
- ///per face indexes of vertex in the solver
|
|
|
- Eigen::MatrixXi HandleS_Index;
|
|
|
-
|
|
|
- ///per vertex variable indexes
|
|
|
- std::vector<std::vector<int> > HandleV_Integer;
|
|
|
-
|
|
|
- // internal
|
|
|
- std::vector<std::vector<int> > VF, VFi;
|
|
|
- std::vector<bool> V_border; // bool
|
|
|
-
|
|
|
- IGL_INLINE VertexIndexing(const Eigen::PlainObjectBase<DerivedV> &_V,
|
|
|
- const Eigen::PlainObjectBase<DerivedF> &_F,
|
|
|
- const Eigen::PlainObjectBase<DerivedF> &_TT,
|
|
|
- const Eigen::PlainObjectBase<DerivedF> &_TTi,
|
|
|
- // const Eigen::PlainObjectBase<DerivedV> &_PD1,
|
|
|
- // const Eigen::PlainObjectBase<DerivedV> &_PD2,
|
|
|
- const Eigen::Matrix<int, Eigen::Dynamic, 3> &_Handle_MMatch,
|
|
|
- // const Eigen::Matrix<int, Eigen::Dynamic, 1> &_Handle_Singular,
|
|
|
- // const Eigen::Matrix<int, Eigen::Dynamic, 1> &_Handle_SingularDegree,
|
|
|
- const Eigen::Matrix<int, Eigen::Dynamic, 3> &_Handle_Seams
|
|
|
- );
|
|
|
-
|
|
|
- ///vertex to variable mapping
|
|
|
- IGL_INLINE void InitMapping();
|
|
|
-
|
|
|
- IGL_INLINE void InitFaceIntegerVal();
|
|
|
-
|
|
|
- IGL_INLINE void InitSeamInfo();
|
|
|
-
|
|
|
-
|
|
|
- private:
|
|
|
- ///this maps back index to vertices
|
|
|
- std::vector<int> IndexToVert; // TODO remove it is useless
|
|
|
-
|
|
|
- ///this is used for drawing purposes
|
|
|
- std::vector<int> duplicated; // TODO remove it is useless
|
|
|
-
|
|
|
- IGL_INLINE void FirstPos(const int v, int &f, int &edge);
|
|
|
-
|
|
|
- IGL_INLINE int AddNewIndex(const int v0);
|
|
|
-
|
|
|
- IGL_INLINE bool HasIndex(int indexVert,int indexVar);
|
|
|
-
|
|
|
- IGL_INLINE void GetSeamInfo(const int f0,
|
|
|
- const int f1,
|
|
|
- const int indexE,
|
|
|
- int &v0,int &v1,
|
|
|
- int &v0p,int &v1p,
|
|
|
- unsigned char &_MMatch,
|
|
|
- int &integerVar);
|
|
|
- IGL_INLINE bool IsSeam(const int f0, const int f1);
|
|
|
-
|
|
|
- ///find initial position of the pos to
|
|
|
- // assing face to vert inxex correctly
|
|
|
- IGL_INLINE void FindInitialPos(const int vert, int &edge, int &face);
|
|
|
-
|
|
|
-
|
|
|
- ///intialize the mapping given an initial pos
|
|
|
- ///whih must be initialized with FindInitialPos
|
|
|
- IGL_INLINE void MapIndexes(const int vert, const int edge_init, const int f_init);
|
|
|
-
|
|
|
- ///intialize the mapping for a given vertex
|
|
|
- IGL_INLINE void InitMappingSeam(const int vert);
|
|
|
-
|
|
|
- ///intialize the mapping for a given sampled mesh
|
|
|
- IGL_INLINE void InitMappingSeam();
|
|
|
-
|
|
|
- ///test consistency of face variables per vert mapping
|
|
|
- IGL_INLINE void TestSeamMappingFace(const int f);
|
|
|
-
|
|
|
- ///test consistency of face variables per vert mapping
|
|
|
- IGL_INLINE void TestSeamMappingVertex(int indexVert);
|
|
|
-
|
|
|
- ///check consistency of variable mapping across seams
|
|
|
- IGL_INLINE void TestSeamMapping();
|
|
|
-
|
|
|
- };
|
|
|
-
|
|
|
-
|
|
|
- template <typename DerivedV, typename DerivedF>
|
|
|
- class PoissonSolver
|
|
|
- {
|
|
|
-
|
|
|
- public:
|
|
|
- IGL_INLINE void SolvePoisson(Eigen::VectorXd Stiffness,
|
|
|
- double vector_field_scale=0.1f,
|
|
|
- double grid_res=1.f,
|
|
|
- bool direct_round=true,
|
|
|
- int localIter=0,
|
|
|
- bool _integer_rounding=true,
|
|
|
- bool _singularity_rounding=true,
|
|
|
- std::vector<int> roundVertices = std::vector<int>(),
|
|
|
- std::vector<std::vector<int> > hardFeatures = std::vector<std::vector<int> >());
|
|
|
-
|
|
|
- IGL_INLINE PoissonSolver(const Eigen::PlainObjectBase<DerivedV> &_V,
|
|
|
- const Eigen::PlainObjectBase<DerivedF> &_F,
|
|
|
- const Eigen::PlainObjectBase<DerivedF> &_TT,
|
|
|
- const Eigen::PlainObjectBase<DerivedF> &_TTi,
|
|
|
- const Eigen::PlainObjectBase<DerivedV> &_PD1,
|
|
|
- const Eigen::PlainObjectBase<DerivedV> &_PD2,
|
|
|
- const Eigen::MatrixXi &_HandleS_Index,
|
|
|
- const Eigen::Matrix<int, Eigen::Dynamic, 1>&_Handle_Singular,
|
|
|
- const MeshSystemInfo &_Handle_SystemInfo
|
|
|
- );
|
|
|
-
|
|
|
- const Eigen::PlainObjectBase<DerivedV> &V;
|
|
|
- const Eigen::PlainObjectBase<DerivedF> &F;
|
|
|
- const Eigen::PlainObjectBase<DerivedF> &TT;
|
|
|
- const Eigen::PlainObjectBase<DerivedF> &TTi;
|
|
|
- const Eigen::PlainObjectBase<DerivedV> &PD1;
|
|
|
- const Eigen::PlainObjectBase<DerivedV> &PD2;
|
|
|
- const Eigen::Matrix<int, Eigen::Dynamic, 1> &Handle_Singular; // bool
|
|
|
- const Eigen::MatrixXi &HandleS_Index; //todo
|
|
|
-
|
|
|
- const MeshSystemInfo &Handle_SystemInfo;
|
|
|
-
|
|
|
- // Internal:
|
|
|
- Eigen::MatrixXd doublearea;
|
|
|
- Eigen::VectorXd Handle_Stiffness;
|
|
|
- Eigen::PlainObjectBase<DerivedV> N;
|
|
|
- std::vector<std::vector<int> > VF;
|
|
|
- std::vector<std::vector<int> > VFi;
|
|
|
- Eigen::MatrixXd UV; // this is probably useless
|
|
|
-
|
|
|
- // Output:
|
|
|
- // per wedge UV coordinates, 6 coordinates (1 face) per row
|
|
|
- Eigen::MatrixXd WUV;
|
|
|
-
|
|
|
- ///solver data
|
|
|
- SparseSystemData S;
|
|
|
-
|
|
|
- ///vector of unknowns
|
|
|
- std::vector< double > X;
|
|
|
-
|
|
|
- ////REAL PART
|
|
|
- ///number of fixed vertex
|
|
|
- unsigned int n_fixed_vars;
|
|
|
-
|
|
|
- ///the number of REAL variables for vertices
|
|
|
- unsigned int n_vert_vars;
|
|
|
-
|
|
|
- ///total number of variables of the system,
|
|
|
- ///do not consider constraints, but consider integer vars
|
|
|
- unsigned int num_total_vars;
|
|
|
-
|
|
|
- //////INTEGER PART
|
|
|
- ///the total number of integer variables
|
|
|
- unsigned int n_integer_vars;
|
|
|
-
|
|
|
- ///CONSTRAINT PART
|
|
|
- ///number of cuts constraints
|
|
|
- unsigned int num_cut_constraint;
|
|
|
-
|
|
|
- // number of user-defined constraints
|
|
|
- unsigned int num_userdefined_constraint;
|
|
|
-
|
|
|
- ///total number of constraints equations
|
|
|
- unsigned int num_constraint_equations;
|
|
|
-
|
|
|
- ///total size of the system including constraints
|
|
|
- unsigned int system_size;
|
|
|
-
|
|
|
- ///if you intend to make integer rotation
|
|
|
- ///and translations
|
|
|
- bool integer_jumps_bary;
|
|
|
-
|
|
|
- ///vector of blocked vertices
|
|
|
- std::vector<int> Hard_constraints;
|
|
|
-
|
|
|
- ///vector of indexes to round
|
|
|
- std::vector<int> ids_to_round;
|
|
|
-
|
|
|
- ///vector of indexes to round
|
|
|
- std::vector<std::vector<int > > userdefined_constraints;
|
|
|
-
|
|
|
- ///boolean that is true if rounding to integer is needed
|
|
|
- bool integer_rounding;
|
|
|
-
|
|
|
- ///START SYSTEM ACCESS METHODS
|
|
|
- ///add an entry to the LHS
|
|
|
- IGL_INLINE void AddValA(int Xindex,
|
|
|
- int Yindex,
|
|
|
- double val);
|
|
|
-
|
|
|
- ///add a complex entry to the LHS
|
|
|
- IGL_INLINE void AddComplexA(int VarXindex,
|
|
|
- int VarYindex,
|
|
|
- std::complex<double> val);
|
|
|
-
|
|
|
- ///add a velue to the RHS
|
|
|
- IGL_INLINE void AddValB(int Xindex,
|
|
|
- double val);
|
|
|
-
|
|
|
- ///add the area term, scalefactor is used to sum up
|
|
|
- ///and normalize on the overlap zones
|
|
|
- IGL_INLINE void AddAreaTerm(int index[3][3][2],double ScaleFactor);
|
|
|
-
|
|
|
- ///set the diagonal of the matrix (which is zero at the beginning)
|
|
|
- ///such that the sum of a row or a colums is zero
|
|
|
- IGL_INLINE void SetDiagonal(double val[3][3]);
|
|
|
-
|
|
|
- ///given a vector of scalar values and
|
|
|
- ///a vector of indexes add such values
|
|
|
- ///as specified by the indexes
|
|
|
- IGL_INLINE void AddRHS(double b[6],
|
|
|
- int index[3]);
|
|
|
-
|
|
|
- ///add a 3x3 block matrix to the system matrix...
|
|
|
- ///indexes are specified in the 3x3 matrix of x,y pairs
|
|
|
- ///indexes must be multiplied by 2 cause u and v
|
|
|
- IGL_INLINE void Add33Block(double val[3][3], int index[3][3][2]);
|
|
|
-
|
|
|
- ///add a 3x3 block matrix to the system matrix...
|
|
|
- ///indexes are specified in the 3x3 matrix of x,y pairs
|
|
|
- ///indexes must be multiplied by 2 cause u and v
|
|
|
- IGL_INLINE void Add44Block(double val[4][4],int index[4][4][2]);
|
|
|
- ///END SYSTEM ACCESS METHODS
|
|
|
-
|
|
|
- ///START COMMON MATH FUNCTIONS
|
|
|
- ///return the complex encoding the rotation
|
|
|
- ///for a given missmatch interval
|
|
|
- IGL_INLINE std::complex<double> GetRotationComplex(int interval);
|
|
|
- ///END COMMON MATH FUNCTIONS
|
|
|
-
|
|
|
-
|
|
|
- ///START ENERGY MINIMIZATION PART
|
|
|
- ///initialize the LHS for a given face
|
|
|
- ///for minimization of Dirichlet's energy
|
|
|
- IGL_INLINE void perElementLHS(int f,
|
|
|
- double val[3][3],
|
|
|
- int index[3][3][2]);
|
|
|
-
|
|
|
- ///initialize the RHS for a given face
|
|
|
- ///for minimization of Dirichlet's energy
|
|
|
- IGL_INLINE void perElementRHS(int f,
|
|
|
- double b[6],
|
|
|
- double vector_field_scale=1);
|
|
|
-
|
|
|
- ///evaluate the LHS and RHS for a single face
|
|
|
- ///for minimization of Dirichlet's energy
|
|
|
- IGL_INLINE void PerElementSystemReal(int f,
|
|
|
- double val[3][3],
|
|
|
- int index[3][3][2],
|
|
|
- double b[6],
|
|
|
- double vector_field_scale=1.0);
|
|
|
- ///END ENERGY MINIMIZATION PART
|
|
|
-
|
|
|
- ///START FIXING VERTICES
|
|
|
- ///set a given vertex as fixed
|
|
|
- IGL_INLINE void AddFixedVertex(int v);
|
|
|
-
|
|
|
- ///find vertex to fix in case we're using
|
|
|
- ///a vector field NB: multiple components not handled
|
|
|
- IGL_INLINE void FindFixedVertField();
|
|
|
-
|
|
|
- ///find hard constraint depending if using or not
|
|
|
- ///a vector field
|
|
|
- IGL_INLINE void FindFixedVert();
|
|
|
-
|
|
|
- IGL_INLINE int GetFirstVertexIndex(int v);
|
|
|
-
|
|
|
- ///fix the vertices which are flagged as fixed
|
|
|
- IGL_INLINE void FixBlockedVertex();
|
|
|
- ///END FIXING VERTICES
|
|
|
-
|
|
|
- ///HANDLING SINGULARITY
|
|
|
- //set the singularity round to integer location
|
|
|
- IGL_INLINE void AddSingularityRound();
|
|
|
-
|
|
|
- IGL_INLINE void AddToRoundVertices(std::vector<int> ids);
|
|
|
-
|
|
|
- ///START GENERIC SYSTEM FUNCTIONS
|
|
|
- //build the laplacian matrix cyclyng over all rangemaps
|
|
|
- //and over all faces
|
|
|
- IGL_INLINE void BuildLaplacianMatrix(double vfscale=1);
|
|
|
-
|
|
|
- ///find different sized of the system
|
|
|
- IGL_INLINE void FindSizes();
|
|
|
-
|
|
|
- IGL_INLINE void AllocateSystem();
|
|
|
-
|
|
|
- ///intitialize the whole matrix
|
|
|
- IGL_INLINE void InitMatrix();
|
|
|
-
|
|
|
- ///map back coordinates after that
|
|
|
- ///the system has been solved
|
|
|
- IGL_INLINE void MapCoords();
|
|
|
- ///END GENERIC SYSTEM FUNCTIONS
|
|
|
-
|
|
|
- ///set the constraints for the inter-range cuts
|
|
|
- IGL_INLINE void BuildSeamConstraintsExplicitTranslation();
|
|
|
-
|
|
|
- ///set the constraints for the inter-range cuts
|
|
|
- IGL_INLINE void BuildUserDefinedConstraints();
|
|
|
-
|
|
|
- ///call of the mixed integer solver
|
|
|
- IGL_INLINE void MixedIntegerSolve(double cone_grid_res=1,
|
|
|
- bool direct_round=true,
|
|
|
- int localIter=0);
|
|
|
-
|
|
|
- IGL_INLINE void clearUserConstraint();
|
|
|
-
|
|
|
- IGL_INLINE void addSharpEdgeConstraint(int fid, int vid);
|
|
|
-
|
|
|
- };
|
|
|
-
|
|
|
- template <typename DerivedV, typename DerivedF, typename DerivedU>
|
|
|
- class MIQ_class
|
|
|
- {
|
|
|
- private:
|
|
|
- const Eigen::PlainObjectBase<DerivedV> &V;
|
|
|
- const Eigen::PlainObjectBase<DerivedF> &F;
|
|
|
- Eigen::MatrixXd WUV;
|
|
|
- // internal
|
|
|
- Eigen::PlainObjectBase<DerivedF> TT;
|
|
|
- Eigen::PlainObjectBase<DerivedF> TTi;
|
|
|
-
|
|
|
- // Stiffness per face
|
|
|
- Eigen::VectorXd Handle_Stiffness;
|
|
|
- Eigen::PlainObjectBase<DerivedV> B1, B2, B3;
|
|
|
-
|
|
|
- public:
|
|
|
- IGL_INLINE MIQ_class(const Eigen::PlainObjectBase<DerivedV> &V_,
|
|
|
- const Eigen::PlainObjectBase<DerivedF> &F_,
|
|
|
- const Eigen::PlainObjectBase<DerivedV> &PD1_combed,
|
|
|
- const Eigen::PlainObjectBase<DerivedV> &PD2_combed,
|
|
|
- // const Eigen::PlainObjectBase<DerivedV> &BIS1_combed,
|
|
|
- // const Eigen::PlainObjectBase<DerivedV> &BIS2_combed,
|
|
|
- const Eigen::Matrix<int, Eigen::Dynamic, 3> &Handle_MMatch,
|
|
|
- const Eigen::Matrix<int, Eigen::Dynamic, 1> &Handle_Singular,
|
|
|
- // const Eigen::Matrix<int, Eigen::Dynamic, 1> &Handle_SingularDegree,
|
|
|
- const Eigen::Matrix<int, Eigen::Dynamic, 3> &Handle_Seams,
|
|
|
- Eigen::PlainObjectBase<DerivedU> &UV,
|
|
|
- Eigen::PlainObjectBase<DerivedF> &FUV,
|
|
|
- double GradientSize = 30.0,
|
|
|
- double Stiffness = 5.0,
|
|
|
- bool DirectRound = false,
|
|
|
- int iter = 5,
|
|
|
- int localIter = 5,
|
|
|
- bool DoRound = true,
|
|
|
- bool SingularityRound=true,
|
|
|
- std::vector<int> roundVertices = std::vector<int>(),
|
|
|
- std::vector<std::vector<int> > hardFeatures = std::vector<std::vector<int> >());
|
|
|
-
|
|
|
-
|
|
|
- IGL_INLINE void extractUV(Eigen::PlainObjectBase<DerivedU> &UV_out,
|
|
|
- Eigen::PlainObjectBase<DerivedF> &FUV_out);
|
|
|
-
|
|
|
- private:
|
|
|
- IGL_INLINE int NumFlips(const Eigen::MatrixXd& WUV);
|
|
|
-
|
|
|
- IGL_INLINE double Distortion(int f, double h, const Eigen::MatrixXd& WUV);
|
|
|
-
|
|
|
- IGL_INLINE double LaplaceDistortion(const int f, double h, const Eigen::MatrixXd& WUV);
|
|
|
-
|
|
|
- IGL_INLINE bool updateStiffeningJacobianDistorsion(double grad_size, const Eigen::MatrixXd& WUV);
|
|
|
-
|
|
|
- IGL_INLINE bool IsFlipped(const Eigen::Vector2d &uv0,
|
|
|
- const Eigen::Vector2d &uv1,
|
|
|
- const Eigen::Vector2d &uv2);
|
|
|
-
|
|
|
- IGL_INLINE bool IsFlipped(const int i, const Eigen::MatrixXd& WUV);
|
|
|
-
|
|
|
- };
|
|
|
-};
|
|
|
-
|
|
|
-IGL_INLINE igl::SeamInfo::SeamInfo(int _v0,
|
|
|
- int _v1,
|
|
|
- int _v0p,
|
|
|
- int _v1p,
|
|
|
- int _MMatch,
|
|
|
- int _integerVar)
|
|
|
-{
|
|
|
- v0=_v0;
|
|
|
- v1=_v1;
|
|
|
- v0p=_v0p;
|
|
|
- v1p=_v1p;
|
|
|
- integerVar=_integerVar;
|
|
|
- MMatch=_MMatch;
|
|
|
-}
|
|
|
-
|
|
|
-IGL_INLINE igl::SeamInfo::SeamInfo(const SeamInfo &S1)
|
|
|
-{
|
|
|
- v0=S1.v0;
|
|
|
- v1=S1.v1;
|
|
|
- v0p=S1.v0p;
|
|
|
- v1p=S1.v1p;
|
|
|
- integerVar=S1.integerVar;
|
|
|
- MMatch=S1.MMatch;
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE igl::VertexIndexing<DerivedV, DerivedF>::VertexIndexing(const Eigen::PlainObjectBase<DerivedV> &_V,
|
|
|
- const Eigen::PlainObjectBase<DerivedF> &_F,
|
|
|
- const Eigen::PlainObjectBase<DerivedF> &_TT,
|
|
|
- const Eigen::PlainObjectBase<DerivedF> &_TTi,
|
|
|
- // const Eigen::PlainObjectBase<DerivedV> &_PD1,
|
|
|
- // const Eigen::PlainObjectBase<DerivedV> &_PD2,
|
|
|
- const Eigen::Matrix<int, Eigen::Dynamic, 3> &_Handle_MMatch,
|
|
|
- // const Eigen::Matrix<int, Eigen::Dynamic, 1> &_Handle_Singular,
|
|
|
- // const Eigen::Matrix<int, Eigen::Dynamic, 1> &_Handle_SingularDegree,
|
|
|
- const Eigen::Matrix<int, Eigen::Dynamic, 3> &_Handle_Seams
|
|
|
-
|
|
|
- ):
|
|
|
-V(_V),
|
|
|
-F(_F),
|
|
|
-TT(_TT),
|
|
|
-TTi(_TTi),
|
|
|
-// PD1(_PD1),
|
|
|
-// PD2(_PD2),
|
|
|
-Handle_MMatch(_Handle_MMatch),
|
|
|
-// Handle_Singular(_Handle_Singular),
|
|
|
-// Handle_SingularDegree(_Handle_SingularDegree),
|
|
|
-Handle_Seams(_Handle_Seams)
|
|
|
-{
|
|
|
-
|
|
|
- V_border = igl::is_border_vertex(V,F);
|
|
|
- igl::vertex_triangle_adjacency(V,F,VF,VFi);
|
|
|
-
|
|
|
- IndexToVert.clear();
|
|
|
-
|
|
|
- Handle_SystemInfo.num_scalar_variables=0;
|
|
|
- Handle_SystemInfo.num_vert_variables=0;
|
|
|
- Handle_SystemInfo.num_integer_cuts=0;
|
|
|
-
|
|
|
- duplicated.clear();
|
|
|
-
|
|
|
- HandleS_Index = Eigen::MatrixXi::Constant(F.rows(),3,-1);
|
|
|
-
|
|
|
- Handle_Integer = Eigen::MatrixXi::Constant(F.rows(),3,-1);
|
|
|
-
|
|
|
- HandleV_Integer.resize(V.rows());
|
|
|
-}
|
|
|
-
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::VertexIndexing<DerivedV, DerivedF>::FirstPos(const int v, int &f, int &edge)
|
|
|
-{
|
|
|
- f = VF[v][0]; // f=v->cVFp();
|
|
|
- edge = VFi[v][0]; // edge=v->cVFi();
|
|
|
-}
|
|
|
-
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE int igl::VertexIndexing<DerivedV, DerivedF>::AddNewIndex(const int v0)
|
|
|
-{
|
|
|
- Handle_SystemInfo.num_scalar_variables++;
|
|
|
- HandleV_Integer[v0].push_back(Handle_SystemInfo.num_scalar_variables);
|
|
|
- IndexToVert.push_back(v0);
|
|
|
- return Handle_SystemInfo.num_scalar_variables;
|
|
|
-}
|
|
|
-
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE bool igl::VertexIndexing<DerivedV, DerivedF>::HasIndex(int indexVert,int indexVar)
|
|
|
-{
|
|
|
- for (unsigned int i=0;i<HandleV_Integer[indexVert].size();i++)
|
|
|
- if (HandleV_Integer[indexVert][i]==indexVar)return true;
|
|
|
- return false;
|
|
|
-}
|
|
|
-
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::VertexIndexing<DerivedV, DerivedF>::GetSeamInfo(const int f0,
|
|
|
- const int f1,
|
|
|
- const int indexE,
|
|
|
- int &v0,int &v1,
|
|
|
- int &v0p,int &v1p,
|
|
|
- unsigned char &_MMatch,
|
|
|
- int &integerVar)
|
|
|
-{
|
|
|
- int edgef0 = indexE;
|
|
|
- v0 = HandleS_Index(f0,edgef0);
|
|
|
- v1 = HandleS_Index(f0,(edgef0+1)%3);
|
|
|
- ////get the index on opposite side
|
|
|
- assert(TT(f0,edgef0) == f1);
|
|
|
- int edgef1 = TTi(f0,edgef0);
|
|
|
- v1p = HandleS_Index(f1,edgef1);
|
|
|
- v0p = HandleS_Index(f1,(edgef1+1)%3);
|
|
|
-
|
|
|
- integerVar = Handle_Integer(f0,edgef0);
|
|
|
- _MMatch = Handle_MMatch(f0,edgef0);
|
|
|
- assert(F(f0,edgef0) == F(f1,((edgef1+1)%3)));
|
|
|
- assert(F(f0,((edgef0+1)%3)) == F(f1,edgef1));
|
|
|
-}
|
|
|
-
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE bool igl::VertexIndexing<DerivedV, DerivedF>::IsSeam(const int f0, const int f1)
|
|
|
-{
|
|
|
- for (int i=0;i<3;i++)
|
|
|
- {
|
|
|
- int f_clos = TT(f0,i);
|
|
|
-
|
|
|
- if (f_clos == -1)
|
|
|
- continue; ///border
|
|
|
-
|
|
|
- if (f_clos == f1)
|
|
|
- return(Handle_Seams(f0,i));
|
|
|
- }
|
|
|
- assert(0);
|
|
|
- return false;
|
|
|
-}
|
|
|
-
|
|
|
-///find initial position of the pos to
|
|
|
-// assing face to vert inxex correctly
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::VertexIndexing<DerivedV, DerivedF>::FindInitialPos(const int vert,
|
|
|
- int &edge,
|
|
|
- int &face)
|
|
|
-{
|
|
|
- int f_init;
|
|
|
- int edge_init;
|
|
|
- FirstPos(vert,f_init,edge_init); // todo manually IGL_INLINE the function
|
|
|
- igl::HalfEdgeIterator<DerivedF> VFI(&F,&TT,&TTi,f_init,edge_init);
|
|
|
-
|
|
|
- bool vertexB = V_border[vert];
|
|
|
- bool possible_split=false;
|
|
|
- bool complete_turn=false;
|
|
|
- do
|
|
|
- {
|
|
|
- int curr_f = VFI.Fi();
|
|
|
- int curr_edge=VFI.Ei();
|
|
|
- VFI.NextFE();
|
|
|
- int next_f=VFI.Fi();
|
|
|
- ///test if I've just crossed a border
|
|
|
- bool on_border=(TT(curr_f,curr_edge)==-1);
|
|
|
- //bool mismatch=false;
|
|
|
- bool seam=false;
|
|
|
-
|
|
|
- ///or if I've just crossed a seam
|
|
|
- ///if I'm on a border I MUST start from the one next t othe border
|
|
|
- if (!vertexB)
|
|
|
- //seam=curr_f->IsSeam(next_f);
|
|
|
- seam=IsSeam(curr_f,next_f);
|
|
|
- // if (vertexB)
|
|
|
- // assert(!Handle_Singular(vert));
|
|
|
- // ;
|
|
|
- //assert(!vert->IsSingular());
|
|
|
- possible_split=((on_border)||(seam));
|
|
|
- complete_turn = next_f == f_init;
|
|
|
- } while ((!possible_split)&&(!complete_turn));
|
|
|
- face=VFI.Fi();
|
|
|
- edge=VFI.Ei();
|
|
|
- ///test that is not on a border
|
|
|
- //assert(face->FFp(edge)!=face);
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-///intialize the mapping given an initial pos
|
|
|
-///whih must be initialized with FindInitialPos
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::VertexIndexing<DerivedV, DerivedF>::MapIndexes(const int vert,
|
|
|
- const int edge_init,
|
|
|
- const int f_init)
|
|
|
-{
|
|
|
- ///check that is not on border..
|
|
|
- ///in such case maybe it's non manyfold
|
|
|
- ///insert an initial index
|
|
|
- int curr_index=AddNewIndex(vert);
|
|
|
- ///and initialize the jumping pos
|
|
|
- igl::HalfEdgeIterator<DerivedF> VFI(&F,&TT,&TTi,f_init,edge_init);
|
|
|
- bool complete_turn=false;
|
|
|
- do
|
|
|
- {
|
|
|
- int curr_f = VFI.Fi();
|
|
|
- int curr_edge = VFI.Ei();
|
|
|
- ///assing the current index
|
|
|
- HandleS_Index(curr_f,curr_edge) = curr_index;
|
|
|
- VFI.NextFE();
|
|
|
- int next_f = VFI.Fi();
|
|
|
- ///test if I've finiseh with the face exploration
|
|
|
- complete_turn = (next_f==f_init);
|
|
|
- ///or if I've just crossed a mismatch
|
|
|
- if (!complete_turn)
|
|
|
- {
|
|
|
- bool seam=false;
|
|
|
- //seam=curr_f->IsSeam(next_f);
|
|
|
- seam=IsSeam(curr_f,next_f);
|
|
|
- if (seam)
|
|
|
- {
|
|
|
- ///then add a new index
|
|
|
- curr_index=AddNewIndex(vert);
|
|
|
- }
|
|
|
- }
|
|
|
- } while (!complete_turn);
|
|
|
-}
|
|
|
-
|
|
|
-///intialize the mapping for a given vertex
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::VertexIndexing<DerivedV, DerivedF>::InitMappingSeam(const int vert)
|
|
|
-{
|
|
|
- ///first rotate until find the first pos after a mismatch
|
|
|
- ///or a border or return to the first position...
|
|
|
- int f_init = VF[vert][0];
|
|
|
- int indexE = VFi[vert][0];
|
|
|
-
|
|
|
- igl::HalfEdgeIterator<DerivedF> VFI(&F,&TT,&TTi,f_init,indexE);
|
|
|
-
|
|
|
- int edge_init;
|
|
|
- int face_init;
|
|
|
- FindInitialPos(vert,edge_init,face_init);
|
|
|
- MapIndexes(vert,edge_init,face_init);
|
|
|
-}
|
|
|
-
|
|
|
-///intialize the mapping for a given sampled mesh
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::VertexIndexing<DerivedV, DerivedF>::InitMappingSeam()
|
|
|
-{
|
|
|
- //num_scalar_variables=-1;
|
|
|
- Handle_SystemInfo.num_scalar_variables=-1;
|
|
|
- for (unsigned int i=0;i<V.rows();i++)
|
|
|
- InitMappingSeam(i);
|
|
|
-
|
|
|
- for (unsigned int j=0;j<V.rows();j++)
|
|
|
- {
|
|
|
- assert(HandleV_Integer[j].size()>0);
|
|
|
- if (HandleV_Integer[j].size()>1)
|
|
|
- duplicated.push_back(j);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-///test consistency of face variables per vert mapping
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::VertexIndexing<DerivedV, DerivedF>::TestSeamMappingFace(const int f)
|
|
|
-{
|
|
|
- for (int k=0;k<3;k++)
|
|
|
- {
|
|
|
- int indexV=HandleS_Index(f,k);
|
|
|
- int v = F(f,k);
|
|
|
- bool has_index=HasIndex(v,indexV);
|
|
|
- assert(has_index);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-///test consistency of face variables per vert mapping
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::VertexIndexing<DerivedV, DerivedF>::TestSeamMappingVertex(int indexVert)
|
|
|
-{
|
|
|
- for (unsigned int k=0;k<HandleV_Integer[indexVert].size();k++)
|
|
|
- {
|
|
|
- int indexV=HandleV_Integer[indexVert][k];
|
|
|
-
|
|
|
- ///get faces sharing vertex
|
|
|
- std::vector<int> faces = VF[indexVert];
|
|
|
- std::vector<int> indexes = VFi[indexVert];
|
|
|
-
|
|
|
- for (unsigned int j=0;j<faces.size();j++)
|
|
|
- {
|
|
|
- int f = faces[j];
|
|
|
- int index = indexes[j];
|
|
|
- assert(F(f,index) == indexVert);
|
|
|
- assert((index>=0)&&(index<3));
|
|
|
-
|
|
|
- if (HandleS_Index(f,index) == indexV)
|
|
|
- return;
|
|
|
- }
|
|
|
- }
|
|
|
- assert(0);
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-///check consistency of variable mapping across seams
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::VertexIndexing<DerivedV, DerivedF>::TestSeamMapping()
|
|
|
-{
|
|
|
- printf("\n TESTING SEAM INDEXES \n");
|
|
|
- ///test F-V mapping
|
|
|
- for (unsigned int j=0;j<F.rows();j++)
|
|
|
- TestSeamMappingFace(j);
|
|
|
-
|
|
|
- ///TEST V-F MAPPING
|
|
|
- for (unsigned int j=0;j<V.rows();j++)
|
|
|
- TestSeamMappingVertex(j);
|
|
|
-
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-///vertex to variable mapping
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::VertexIndexing<DerivedV, DerivedF>::InitMapping()
|
|
|
-{
|
|
|
- //use_direction_field=_use_direction_field;
|
|
|
-
|
|
|
- IndexToVert.clear();
|
|
|
- duplicated.clear();
|
|
|
-
|
|
|
- InitMappingSeam();
|
|
|
-
|
|
|
- Handle_SystemInfo.num_vert_variables=Handle_SystemInfo.num_scalar_variables+1;
|
|
|
-
|
|
|
- ///end testing...
|
|
|
- TestSeamMapping();
|
|
|
-}
|
|
|
-
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::VertexIndexing<DerivedV, DerivedF>::InitFaceIntegerVal()
|
|
|
-{
|
|
|
- Handle_SystemInfo.num_integer_cuts=0;
|
|
|
- for (unsigned int j=0;j<F.rows();j++)
|
|
|
- {
|
|
|
- for (int k=0;k<3;k++)
|
|
|
- {
|
|
|
- if (Handle_Seams(j,k))
|
|
|
- {
|
|
|
- Handle_Integer(j,k) = Handle_SystemInfo.num_integer_cuts;
|
|
|
- Handle_SystemInfo.num_integer_cuts++;
|
|
|
- }
|
|
|
- else
|
|
|
- Handle_Integer(j,k)=-1;
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::VertexIndexing<DerivedV, DerivedF>::InitSeamInfo()
|
|
|
-{
|
|
|
- Handle_SystemInfo.EdgeSeamInfo.clear();
|
|
|
- for (unsigned int f0=0;f0<F.rows();f0++)
|
|
|
- {
|
|
|
- for (int k=0;k<3;k++)
|
|
|
- {
|
|
|
- int f1 = TT(f0,k);
|
|
|
-
|
|
|
- if (f1 == -1)
|
|
|
- continue;
|
|
|
-
|
|
|
- bool seam = Handle_Seams(f0,k);
|
|
|
- if (seam)
|
|
|
- {
|
|
|
- int v0,v0p,v1,v1p;
|
|
|
- unsigned char MM;
|
|
|
- int integerVar;
|
|
|
- GetSeamInfo(f0,f1,k,v0,v1,v0p,v1p,MM,integerVar);
|
|
|
- Handle_SystemInfo.EdgeSeamInfo.push_back(SeamInfo(v0,v1,v0p,v1p,MM,integerVar));
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::PoissonSolver<DerivedV, DerivedF>::SolvePoisson(Eigen::VectorXd Stiffness,
|
|
|
- double vector_field_scale,
|
|
|
- double grid_res,
|
|
|
- bool direct_round,
|
|
|
- int localIter,
|
|
|
- bool _integer_rounding,
|
|
|
- bool _singularity_rounding,
|
|
|
- std::vector<int> roundVertices,
|
|
|
- std::vector<std::vector<int> > hardFeatures)
|
|
|
-{
|
|
|
- Handle_Stiffness = Stiffness;
|
|
|
-
|
|
|
- //initialization of flags and data structures
|
|
|
- integer_rounding=_integer_rounding;
|
|
|
-
|
|
|
- ids_to_round.clear();
|
|
|
-
|
|
|
- clearUserConstraint();
|
|
|
- // copy the user constraints number
|
|
|
- for (size_t i = 0; i < hardFeatures.size(); ++i)
|
|
|
- {
|
|
|
- addSharpEdgeConstraint(hardFeatures[i][0],hardFeatures[i][1]);
|
|
|
- }
|
|
|
-
|
|
|
- ///Initializing Matrix
|
|
|
-
|
|
|
- int t0=clock();
|
|
|
-
|
|
|
- ///initialize the matrix ALLOCATING SPACE
|
|
|
- InitMatrix();
|
|
|
- if (DEBUGPRINT)
|
|
|
- printf("\n ALLOCATED THE MATRIX \n");
|
|
|
-
|
|
|
- ///build the laplacian system
|
|
|
- BuildLaplacianMatrix(vector_field_scale);
|
|
|
-
|
|
|
- // add seam constraints
|
|
|
- BuildSeamConstraintsExplicitTranslation();
|
|
|
-
|
|
|
- // add user defined constraints
|
|
|
- BuildUserDefinedConstraints();
|
|
|
-
|
|
|
- ////add the lagrange multiplier
|
|
|
- FixBlockedVertex();
|
|
|
-
|
|
|
- if (DEBUGPRINT)
|
|
|
- printf("\n BUILT THE MATRIX \n");
|
|
|
-
|
|
|
- if (integer_rounding)
|
|
|
- AddToRoundVertices(roundVertices);
|
|
|
-
|
|
|
- if (_singularity_rounding)
|
|
|
- AddSingularityRound();
|
|
|
-
|
|
|
- int t1=clock();
|
|
|
- if (DEBUGPRINT) printf("\n time:%d \n",t1-t0);
|
|
|
- if (DEBUGPRINT) printf("\n SOLVING \n");
|
|
|
-
|
|
|
- MixedIntegerSolve(grid_res,direct_round,localIter);
|
|
|
-
|
|
|
- int t2=clock();
|
|
|
- if (DEBUGPRINT) printf("\n time:%d \n",t2-t1);
|
|
|
- if (DEBUGPRINT) printf("\n ASSIGNING COORDS \n");
|
|
|
-
|
|
|
- MapCoords();
|
|
|
-
|
|
|
- int t3=clock();
|
|
|
- if (DEBUGPRINT) printf("\n time:%d \n",t3-t2);
|
|
|
- if (DEBUGPRINT) printf("\n FINISHED \n");
|
|
|
-}
|
|
|
-
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE igl::PoissonSolver<DerivedV, DerivedF>
|
|
|
-::PoissonSolver(const Eigen::PlainObjectBase<DerivedV> &_V,
|
|
|
- const Eigen::PlainObjectBase<DerivedF> &_F,
|
|
|
- const Eigen::PlainObjectBase<DerivedF> &_TT,
|
|
|
- const Eigen::PlainObjectBase<DerivedF> &_TTi,
|
|
|
- const Eigen::PlainObjectBase<DerivedV> &_PD1,
|
|
|
- const Eigen::PlainObjectBase<DerivedV> &_PD2,
|
|
|
- const Eigen::MatrixXi &_HandleS_Index,
|
|
|
- const Eigen::Matrix<int, Eigen::Dynamic, 1>&_Handle_Singular,
|
|
|
- const MeshSystemInfo &_Handle_SystemInfo //todo: const?
|
|
|
-):
|
|
|
-V(_V),
|
|
|
-F(_F),
|
|
|
-TT(_TT),
|
|
|
-TTi(_TTi),
|
|
|
-PD1(_PD1),
|
|
|
-PD2(_PD2),
|
|
|
-HandleS_Index(_HandleS_Index),
|
|
|
-Handle_Singular(_Handle_Singular),
|
|
|
-Handle_SystemInfo(_Handle_SystemInfo)
|
|
|
-{
|
|
|
- UV = Eigen::MatrixXd(V.rows(),2);
|
|
|
- WUV = Eigen::MatrixXd(F.rows(),6);
|
|
|
- igl::doublearea(V,F,doublearea);
|
|
|
- igl::per_face_normals(V,F,N);
|
|
|
- igl::vertex_triangle_adjacency(V,F,VF,VFi);
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-///START SYSTEM ACCESS METHODS
|
|
|
-///add an entry to the LHS
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::PoissonSolver<DerivedV, DerivedF>::AddValA(int Xindex,
|
|
|
- int Yindex,
|
|
|
- double val)
|
|
|
-{
|
|
|
- int size=(int)S.nrows();
|
|
|
- assert(0 <= Xindex && Xindex < size);
|
|
|
- assert(0 <= Yindex && Yindex < size);
|
|
|
- S.A().addEntryReal(Xindex,Yindex,val);
|
|
|
-}
|
|
|
-
|
|
|
-///add a complex entry to the LHS
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::PoissonSolver<DerivedV, DerivedF>::AddComplexA(int VarXindex,
|
|
|
- int VarYindex,
|
|
|
- std::complex<double> val)
|
|
|
-{
|
|
|
- int size=(int)S.nrows()/2;
|
|
|
- assert(0 <= VarXindex && VarXindex < size);
|
|
|
- assert(0 <= VarYindex && VarYindex < size);
|
|
|
- S.A().addEntryCmplx(VarXindex,VarYindex,val);
|
|
|
-}
|
|
|
-
|
|
|
-///add a velue to the RHS
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::PoissonSolver<DerivedV, DerivedF>::AddValB(int Xindex,
|
|
|
- double val)
|
|
|
-{
|
|
|
- int size=(int)S.nrows();
|
|
|
- assert(0 <= Xindex && Xindex < size);
|
|
|
- S.b()[Xindex] += val;
|
|
|
-}
|
|
|
-
|
|
|
-///add the area term, scalefactor is used to sum up
|
|
|
-///and normalize on the overlap zones
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::PoissonSolver<DerivedV, DerivedF>::AddAreaTerm(int index[3][3][2],double ScaleFactor)
|
|
|
-{
|
|
|
- const double entry = 0.5*ScaleFactor;
|
|
|
- double val[3][3]= {
|
|
|
- {0, entry, -entry},
|
|
|
- {-entry, 0, entry},
|
|
|
- {entry, -entry, 0}
|
|
|
- };
|
|
|
-
|
|
|
- for (int i=0;i<3;i++)
|
|
|
- for (int j=0;j<3;j++)
|
|
|
- {
|
|
|
- ///add for both u and v
|
|
|
- int Xindex=index[i][j][0]*2;
|
|
|
- int Yindex=index[i][j][1]*2;
|
|
|
-
|
|
|
- AddValA(Xindex+1,Yindex,-val[i][j]);
|
|
|
- AddValA(Xindex,Yindex+1,val[i][j]);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-///set the diagonal of the matrix (which is zero at the beginning)
|
|
|
-///such that the sum of a row or a colums is zero
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::PoissonSolver<DerivedV, DerivedF>::SetDiagonal(double val[3][3])
|
|
|
-{
|
|
|
- for (int i=0;i<3;i++)
|
|
|
- {
|
|
|
- double sum=0;
|
|
|
- for (int j=0;j<3;j++)
|
|
|
- sum+=val[i][j];
|
|
|
- val[i][i]=-sum;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-///given a vector of scalar values and
|
|
|
-///a vector of indexes add such values
|
|
|
-///as specified by the indexes
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::PoissonSolver<DerivedV, DerivedF>::AddRHS(double b[6],
|
|
|
- int index[3])
|
|
|
-{
|
|
|
- for (int i=0;i<3;i++)
|
|
|
- {
|
|
|
- double valU=b[i*2];
|
|
|
- double valV=b[(i*2)+1];
|
|
|
- AddValB((index[i]*2),valU);
|
|
|
- AddValB((index[i]*2)+1,valV);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-///add a 3x3 block matrix to the system matrix...
|
|
|
-///indexes are specified in the 3x3 matrix of x,y pairs
|
|
|
-///indexes must be multiplied by 2 cause u and v
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::PoissonSolver<DerivedV, DerivedF>::Add33Block(double val[3][3], int index[3][3][2])
|
|
|
-{
|
|
|
- for (int i=0;i<3;i++)
|
|
|
- for (int j=0;j<3;j++)
|
|
|
- {
|
|
|
- ///add for both u and v
|
|
|
- int Xindex=index[i][j][0]*2;
|
|
|
- int Yindex=index[i][j][1]*2;
|
|
|
- assert((unsigned)Xindex<(n_vert_vars*2));
|
|
|
- assert((unsigned)Yindex<(n_vert_vars*2));
|
|
|
- AddValA(Xindex,Yindex,val[i][j]);
|
|
|
- AddValA(Xindex+1,Yindex+1,val[i][j]);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-///add a 3x3 block matrix to the system matrix...
|
|
|
-///indexes are specified in the 3x3 matrix of x,y pairs
|
|
|
-///indexes must be multiplied by 2 cause u and v
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::PoissonSolver<DerivedV, DerivedF>::Add44Block(double val[4][4],int index[4][4][2])
|
|
|
-{
|
|
|
- for (int i=0;i<4;i++)
|
|
|
- for (int j=0;j<4;j++)
|
|
|
- {
|
|
|
- ///add for both u and v
|
|
|
- int Xindex=index[i][j][0]*2;
|
|
|
- int Yindex=index[i][j][1]*2;
|
|
|
- assert((unsigned)Xindex<(n_vert_vars*2));
|
|
|
- assert((unsigned)Yindex<(n_vert_vars*2));
|
|
|
- AddValA(Xindex,Yindex,val[i][j]);
|
|
|
- AddValA(Xindex+1,Yindex+1,val[i][j]);
|
|
|
- }
|
|
|
-}
|
|
|
-///END SYSTEM ACCESS METHODS
|
|
|
-
|
|
|
-///START COMMON MATH FUNCTIONS
|
|
|
-///return the complex encoding the rotation
|
|
|
-///for a given missmatch interval
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE std::complex<double> igl::PoissonSolver<DerivedV, DerivedF>::GetRotationComplex(int interval)
|
|
|
-{
|
|
|
- assert((interval>=0)&&(interval<4));
|
|
|
-
|
|
|
- switch(interval)
|
|
|
- {
|
|
|
- case 0:return std::complex<double>(1,0);
|
|
|
- case 1:return std::complex<double>(0,1);
|
|
|
- case 2:return std::complex<double>(-1,0);
|
|
|
- default:return std::complex<double>(0,-1);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-///END COMMON MATH FUNCTIONS
|
|
|
-
|
|
|
-
|
|
|
-///START ENERGY MINIMIZATION PART
|
|
|
-///initialize the LHS for a given face
|
|
|
-///for minimization of Dirichlet's energy
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::PoissonSolver<DerivedV, DerivedF>::perElementLHS(int f,
|
|
|
- double val[3][3],
|
|
|
- int index[3][3][2])
|
|
|
-{
|
|
|
- ///initialize to zero
|
|
|
- for (int x=0;x<3;x++)
|
|
|
- for (int y=0;y<3;y++)
|
|
|
- val[x][y]=0;
|
|
|
-
|
|
|
- ///get the vertices
|
|
|
- int v[3];
|
|
|
- v[0] = F(f,0);
|
|
|
- v[1] = F(f,1);
|
|
|
- v[2] = F(f,2);
|
|
|
-
|
|
|
- ///get the indexes of vertex instance (to consider cuts)
|
|
|
- ///for the current face
|
|
|
- int Vindexes[3];
|
|
|
- Vindexes[0]=HandleS_Index(f,0);
|
|
|
- Vindexes[1]=HandleS_Index(f,1);
|
|
|
- Vindexes[2]=HandleS_Index(f,2);
|
|
|
-
|
|
|
- ///initialize the indexes for the block
|
|
|
- for (int x=0;x<3;x++)
|
|
|
- for (int y=0;y<3;y++)
|
|
|
- {
|
|
|
- index[x][y][0]=Vindexes[x];
|
|
|
- index[x][y][1]=Vindexes[y];
|
|
|
- }
|
|
|
-
|
|
|
- ///initialize edges
|
|
|
- Eigen::Matrix<typename DerivedV::Scalar, 3, 1> e[3];
|
|
|
- for (int k=0;k<3;k++)
|
|
|
- e[k] = V.row(v[(k+2)%3]) - V.row(v[(k+1)%3]);
|
|
|
-
|
|
|
- ///then consider area but also considering scale factor dur to overlaps
|
|
|
-
|
|
|
- double areaT = doublearea(f)/2.0;
|
|
|
-
|
|
|
- for (int x=0;x<3;x++)
|
|
|
- for (int y=0;y<3;y++)
|
|
|
- if (x!=y)
|
|
|
- {
|
|
|
- double num = (e[x].dot(e[y]));
|
|
|
- val[x][y] = num/(4.0*areaT);
|
|
|
- val[x][y] *= Handle_Stiffness[f];//f->stiffening;
|
|
|
- }
|
|
|
-
|
|
|
- ///set the matrix as diagonal
|
|
|
- SetDiagonal(val);
|
|
|
-}
|
|
|
-
|
|
|
-///initialize the RHS for a given face
|
|
|
-///for minimization of Dirichlet's energy
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::PoissonSolver<DerivedV, DerivedF>::perElementRHS(int f,
|
|
|
- double b[6],
|
|
|
- double vector_field_scale)
|
|
|
-{
|
|
|
-
|
|
|
- /// then set the rhs
|
|
|
- Eigen::Matrix<typename DerivedV::Scalar, 3, 1> scaled_Kreal;
|
|
|
- Eigen::Matrix<typename DerivedV::Scalar, 3, 1> scaled_Kimag;
|
|
|
- Eigen::Matrix<typename DerivedV::Scalar, 3, 1> fNorm = N.row(f);
|
|
|
- Eigen::Matrix<typename DerivedV::Scalar, 3, 1> p[3];
|
|
|
- p[0] = V.row(F(f,0));
|
|
|
- p[1] = V.row(F(f,1));
|
|
|
- p[2] = V.row(F(f,2));
|
|
|
-
|
|
|
- Eigen::Matrix<typename DerivedV::Scalar, 3, 1> neg_t[3];
|
|
|
- neg_t[0] = fNorm.cross(p[2] - p[1]);
|
|
|
- neg_t[1] = fNorm.cross(p[0] - p[2]);
|
|
|
- neg_t[2] = fNorm.cross(p[1] - p[0]);
|
|
|
-
|
|
|
- Eigen::Matrix<typename DerivedV::Scalar, 3, 1> K1,K2;
|
|
|
- K1 = PD1.row(f);
|
|
|
- K2 = -PD2.row(f); // TODO: the "-" accounts for the orientation of local_basis.h, adapt the code before and remove the "-"
|
|
|
-
|
|
|
- scaled_Kreal = K1*(vector_field_scale)/2;
|
|
|
- scaled_Kimag = K2*(vector_field_scale)/2;
|
|
|
-
|
|
|
- double stiff_val = Handle_Stiffness[f];
|
|
|
-
|
|
|
- b[0] = scaled_Kreal.dot(neg_t[0]) * stiff_val;
|
|
|
- b[1] = scaled_Kimag.dot(neg_t[0]) * stiff_val;
|
|
|
- b[2] = scaled_Kreal.dot(neg_t[1]) * stiff_val;
|
|
|
- b[3] = scaled_Kimag.dot(neg_t[1]) * stiff_val;
|
|
|
- b[4] = scaled_Kreal.dot(neg_t[2]) * stiff_val;
|
|
|
- b[5] = scaled_Kimag.dot(neg_t[2]) * stiff_val;
|
|
|
-
|
|
|
- // if (f == 0)
|
|
|
- // {
|
|
|
- // cerr << "DEBUG!!!" << endl;
|
|
|
- //
|
|
|
- //
|
|
|
- // for (unsigned z = 0; z<6; ++z)
|
|
|
- // cerr << b[z] << " ";
|
|
|
- // cerr << endl;
|
|
|
- //
|
|
|
- // scaled_Kreal = K1*(vector_field_scale)/2;
|
|
|
- // scaled_Kimag = -K2*(vector_field_scale)/2;
|
|
|
- //
|
|
|
- // double stiff_val = Handle_Stiffness[f];
|
|
|
- //
|
|
|
- // b[0] = scaled_Kreal.dot(neg_t[0]) * stiff_val;
|
|
|
- // b[1] = scaled_Kimag.dot(neg_t[0]) * stiff_val;
|
|
|
- // b[2] = scaled_Kreal.dot(neg_t[1]) * stiff_val;
|
|
|
- // b[3] = scaled_Kimag.dot(neg_t[1]) * stiff_val;
|
|
|
- // b[4] = scaled_Kreal.dot(neg_t[2]) * stiff_val;
|
|
|
- // b[5] = scaled_Kimag.dot(neg_t[2]) * stiff_val;
|
|
|
- //
|
|
|
- // for (unsigned z = 0; z<6; ++z)
|
|
|
- // cerr << b[z] << " ";
|
|
|
- // cerr << endl;
|
|
|
- //
|
|
|
- // }
|
|
|
-
|
|
|
-}
|
|
|
-
|
|
|
-///evaluate the LHS and RHS for a single face
|
|
|
-///for minimization of Dirichlet's energy
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::PoissonSolver<DerivedV, DerivedF>::PerElementSystemReal(int f,
|
|
|
- double val[3][3],
|
|
|
- int index[3][3][2],
|
|
|
- double b[6],
|
|
|
- double vector_field_scale)
|
|
|
-{
|
|
|
- perElementLHS(f,val,index);
|
|
|
- perElementRHS(f,b,vector_field_scale);
|
|
|
-}
|
|
|
-///END ENERGY MINIMIZATION PART
|
|
|
-
|
|
|
-///START FIXING VERTICES
|
|
|
-///set a given vertex as fixed
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::PoissonSolver<DerivedV, DerivedF>::AddFixedVertex(int v)
|
|
|
-{
|
|
|
- n_fixed_vars++;
|
|
|
- Hard_constraints.push_back(v);
|
|
|
-}
|
|
|
-
|
|
|
-///find vertex to fix in case we're using
|
|
|
-///a vector field NB: multiple components not handled
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::PoissonSolver<DerivedV, DerivedF>::FindFixedVertField()
|
|
|
-{
|
|
|
- Hard_constraints.clear();
|
|
|
-
|
|
|
- n_fixed_vars=0;
|
|
|
- ///fix the first singularity
|
|
|
- for (unsigned int v=0;v<V.rows();v++)
|
|
|
- {
|
|
|
- if (Handle_Singular(v))
|
|
|
- {
|
|
|
- AddFixedVertex(v);
|
|
|
- UV.row(v) << 0,0;
|
|
|
- return;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- ///if anything fixed fix the first
|
|
|
- AddFixedVertex(0); // TODO HERE IT ISSSSSS
|
|
|
- UV.row(0) << 0,0;
|
|
|
- std::cerr << "No vertices to fix, I am fixing the first vertex to the origin!" << std::endl;
|
|
|
-}
|
|
|
-
|
|
|
-///find hard constraint depending if using or not
|
|
|
-///a vector field
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::PoissonSolver<DerivedV, DerivedF>::FindFixedVert()
|
|
|
-{
|
|
|
- Hard_constraints.clear();
|
|
|
- FindFixedVertField();
|
|
|
-}
|
|
|
-
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE int igl::PoissonSolver<DerivedV, DerivedF>::GetFirstVertexIndex(int v)
|
|
|
-{
|
|
|
- return HandleS_Index(VF[v][0],VFi[v][0]);
|
|
|
-}
|
|
|
-
|
|
|
-///fix the vertices which are flagged as fixed
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::PoissonSolver<DerivedV, DerivedF>::FixBlockedVertex()
|
|
|
-{
|
|
|
- int offset_row = n_vert_vars*2 + num_cut_constraint*2;
|
|
|
-
|
|
|
- unsigned int constr_num = 0;
|
|
|
- for (unsigned int i=0;i<Hard_constraints.size();i++)
|
|
|
- {
|
|
|
- int v = Hard_constraints[i];
|
|
|
-
|
|
|
- ///get first index of the vertex that must blocked
|
|
|
- //int index=v->vertex_index[0];
|
|
|
- int index = GetFirstVertexIndex(v);
|
|
|
-
|
|
|
- ///multiply times 2 because of uv
|
|
|
- int indexvert = index*2;
|
|
|
-
|
|
|
- ///find the first free row to add the constraint
|
|
|
- int indexRow = (offset_row+constr_num*2);
|
|
|
- int indexCol = indexRow;
|
|
|
-
|
|
|
- ///add fixing constraint LHS
|
|
|
- AddValA(indexRow,indexvert,1);
|
|
|
- AddValA(indexRow+1,indexvert+1,1);
|
|
|
-
|
|
|
- ///add fixing constraint RHS
|
|
|
- AddValB(indexCol, UV(v,0));
|
|
|
- AddValB(indexCol+1,UV(v,1));
|
|
|
-
|
|
|
- constr_num++;
|
|
|
- }
|
|
|
- assert(constr_num==n_fixed_vars);
|
|
|
-}
|
|
|
-///END FIXING VERTICES
|
|
|
-
|
|
|
-///HANDLING SINGULARITY
|
|
|
-//set the singularity round to integer location
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::PoissonSolver<DerivedV, DerivedF>::AddSingularityRound()
|
|
|
-{
|
|
|
- for (unsigned int v=0;v<V.rows();v++)
|
|
|
- {
|
|
|
- if (Handle_Singular(v))
|
|
|
- {
|
|
|
- int index0=GetFirstVertexIndex(v);
|
|
|
- ids_to_round.push_back( index0*2 );
|
|
|
- ids_to_round.push_back((index0*2)+1);
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::PoissonSolver<DerivedV, DerivedF>::AddToRoundVertices(std::vector<int> ids)
|
|
|
-{
|
|
|
- for (size_t i = 0; i < ids.size(); ++i)
|
|
|
- {
|
|
|
- if (ids[i] < 0 || ids[i] >= V.rows())
|
|
|
- std::cerr << "WARNING: Ignored round vertex constraint, vertex " << ids[i] << " does not exist in the mesh." << std::endl;
|
|
|
- int index0 = GetFirstVertexIndex(ids[i]);
|
|
|
- ids_to_round.push_back( index0*2 );
|
|
|
- ids_to_round.push_back((index0*2)+1);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-///START GENERIC SYSTEM FUNCTIONS
|
|
|
-//build the laplacian matrix cyclyng over all rangemaps
|
|
|
-//and over all faces
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::PoissonSolver<DerivedV, DerivedF>::BuildLaplacianMatrix(double vfscale)
|
|
|
-{
|
|
|
- ///then for each face
|
|
|
- for (unsigned int f=0;f<F.rows();f++)
|
|
|
- {
|
|
|
-
|
|
|
- int var_idx[3]; //vertex variable indices
|
|
|
-
|
|
|
- for(int k = 0; k < 3; ++k)
|
|
|
- var_idx[k] = HandleS_Index(f,k);
|
|
|
-
|
|
|
- ///block of variables
|
|
|
- double val[3][3];
|
|
|
- ///block of vertex indexes
|
|
|
- int index[3][3][2];
|
|
|
- ///righe hand side
|
|
|
- double b[6];
|
|
|
- ///compute the system for the given face
|
|
|
- PerElementSystemReal(f, val,index, b, vfscale);
|
|
|
-
|
|
|
- //Add the element to the matrix
|
|
|
- Add33Block(val,index);
|
|
|
-
|
|
|
- ///add right hand side
|
|
|
- AddRHS(b,var_idx);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-///find different sized of the system
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::PoissonSolver<DerivedV, DerivedF>::FindSizes()
|
|
|
-{
|
|
|
- ///find the vertex that need to be fixed
|
|
|
- FindFixedVert();
|
|
|
-
|
|
|
- ///REAL PART
|
|
|
- n_vert_vars = Handle_SystemInfo.num_vert_variables;
|
|
|
-
|
|
|
- ///INTEGER PART
|
|
|
- ///the total number of integer variables
|
|
|
- n_integer_vars = Handle_SystemInfo.num_integer_cuts;
|
|
|
-
|
|
|
- ///CONSTRAINT PART
|
|
|
- num_cut_constraint = Handle_SystemInfo.EdgeSeamInfo.size()*2;
|
|
|
-
|
|
|
- num_constraint_equations = num_cut_constraint*2 + n_fixed_vars*2 + num_userdefined_constraint;
|
|
|
-
|
|
|
- ///total variable of the system
|
|
|
- num_total_vars = n_vert_vars*2+n_integer_vars*2;
|
|
|
-
|
|
|
- ///initialize matrix size
|
|
|
-
|
|
|
- system_size = num_total_vars + num_constraint_equations;
|
|
|
-
|
|
|
- if (DEBUGPRINT) printf("\n*** SYSTEM VARIABLES *** \n");
|
|
|
- if (DEBUGPRINT) printf("* NUM REAL VERTEX VARIABLES %d \n",n_vert_vars);
|
|
|
-
|
|
|
- if (DEBUGPRINT) printf("\n*** SINGULARITY *** \n ");
|
|
|
- if (DEBUGPRINT) printf("* NUM SINGULARITY %d\n",(int)ids_to_round.size()/2);
|
|
|
-
|
|
|
- if (DEBUGPRINT) printf("\n*** INTEGER VARIABLES *** \n");
|
|
|
- if (DEBUGPRINT) printf("* NUM INTEGER VARIABLES %d \n",(int)n_integer_vars);
|
|
|
-
|
|
|
- if (DEBUGPRINT) printf("\n*** CONSTRAINTS *** \n ");
|
|
|
- if (DEBUGPRINT) printf("* NUM FIXED CONSTRAINTS %d\n",n_fixed_vars);
|
|
|
- if (DEBUGPRINT) printf("* NUM CUTS CONSTRAINTS %d\n",num_cut_constraint);
|
|
|
- if (DEBUGPRINT) printf("* NUM USER DEFINED CONSTRAINTS %d\n",num_userdefined_constraint);
|
|
|
-
|
|
|
- if (DEBUGPRINT) printf("\n*** TOTAL SIZE *** \n");
|
|
|
- if (DEBUGPRINT) printf("* TOTAL VARIABLE SIZE (WITH INTEGER TRASL) %d \n",num_total_vars);
|
|
|
- if (DEBUGPRINT) printf("* TOTAL CONSTRAINTS %d \n",num_constraint_equations);
|
|
|
- if (DEBUGPRINT) printf("* MATRIX SIZE %d \n",system_size);
|
|
|
-}
|
|
|
-
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::PoissonSolver<DerivedV, DerivedF>::AllocateSystem()
|
|
|
-{
|
|
|
- S.initialize(system_size, system_size);
|
|
|
- printf("\n INITIALIZED SPARSE MATRIX OF %d x %d \n",system_size, system_size);
|
|
|
-}
|
|
|
-
|
|
|
-///intitialize the whole matrix
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::PoissonSolver<DerivedV, DerivedF>::InitMatrix()
|
|
|
-{
|
|
|
- FindSizes();
|
|
|
- AllocateSystem();
|
|
|
-}
|
|
|
-
|
|
|
-///map back coordinates after that
|
|
|
-///the system has been solved
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::PoissonSolver<DerivedV, DerivedF>::MapCoords()
|
|
|
-{
|
|
|
- ///map coords to faces
|
|
|
- for (unsigned int f=0;f<F.rows();f++)
|
|
|
- {
|
|
|
-
|
|
|
- for (int k=0;k<3;k++)
|
|
|
- {
|
|
|
- //get the index of the variable in the system
|
|
|
- int indexUV = HandleS_Index(f,k);
|
|
|
- ///then get U and V coords
|
|
|
- double U=X[indexUV*2];
|
|
|
- double V=X[indexUV*2+1];
|
|
|
-
|
|
|
- WUV(f,k*2 + 0) = U;
|
|
|
- WUV(f,k*2 + 1) = V;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-#if 0
|
|
|
- ///initialize the vector of integer variables to return their values
|
|
|
- Handle_SystemInfo.IntegerValues.resize(n_integer_vars*2);
|
|
|
- int baseIndex = (n_vert_vars)*2;
|
|
|
- int endIndex = baseIndex+n_integer_vars*2;
|
|
|
- int index = 0;
|
|
|
- for (int i=baseIndex; i<endIndex; i++)
|
|
|
- {
|
|
|
- ///assert that the value is an integer value
|
|
|
- double value=X[i];
|
|
|
- double diff = value-(int)floor(value+0.5);
|
|
|
- assert(diff<0.00000001);
|
|
|
- Handle_SystemInfo.IntegerValues[index] = value;
|
|
|
- index++;
|
|
|
- }
|
|
|
-#endif
|
|
|
-}
|
|
|
-
|
|
|
-///END GENERIC SYSTEM FUNCTIONS
|
|
|
-
|
|
|
-///set the constraints for the inter-range cuts
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::PoissonSolver<DerivedV, DerivedF>::BuildSeamConstraintsExplicitTranslation()
|
|
|
-{
|
|
|
- ///add constraint(s) for every seam edge (not halfedge)
|
|
|
- int offset_row = n_vert_vars;
|
|
|
- ///current constraint row
|
|
|
- int constr_row = offset_row;
|
|
|
- ///current constraint
|
|
|
- unsigned int constr_num = 0;
|
|
|
-
|
|
|
- for (unsigned int i=0; i<num_cut_constraint/2; i++)
|
|
|
- {
|
|
|
- unsigned char interval = Handle_SystemInfo.EdgeSeamInfo[i].MMatch;
|
|
|
- if (interval==1)
|
|
|
- interval=3;
|
|
|
- else
|
|
|
- if(interval==3)
|
|
|
- interval=1;
|
|
|
-
|
|
|
- int p0 = Handle_SystemInfo.EdgeSeamInfo[i].v0;
|
|
|
- int p1 = Handle_SystemInfo.EdgeSeamInfo[i].v1;
|
|
|
- int p0p = Handle_SystemInfo.EdgeSeamInfo[i].v0p;
|
|
|
- int p1p = Handle_SystemInfo.EdgeSeamInfo[i].v1p;
|
|
|
-
|
|
|
- std::complex<double> rot = GetRotationComplex(interval);
|
|
|
-
|
|
|
- ///get the integer variable
|
|
|
- int integerVar = offset_row+Handle_SystemInfo.EdgeSeamInfo[i].integerVar;
|
|
|
-
|
|
|
- if (integer_rounding)
|
|
|
- {
|
|
|
- ids_to_round.push_back(integerVar*2);
|
|
|
- ids_to_round.push_back(integerVar*2+1);
|
|
|
- }
|
|
|
-
|
|
|
- AddComplexA(constr_row, p0 , rot);
|
|
|
- AddComplexA(constr_row, p0p, -1);
|
|
|
- ///then translation...considering the rotation
|
|
|
- ///due to substitution
|
|
|
- AddComplexA(constr_row, integerVar, 1);
|
|
|
-
|
|
|
- AddValB(2*constr_row ,0);
|
|
|
- AddValB(2*constr_row+1,0);
|
|
|
- constr_row +=1;
|
|
|
- constr_num++;
|
|
|
-
|
|
|
- AddComplexA(constr_row, p1, rot);
|
|
|
- AddComplexA(constr_row, p1p, -1);
|
|
|
-
|
|
|
- ///other translation
|
|
|
- AddComplexA(constr_row, integerVar , 1);
|
|
|
-
|
|
|
- AddValB(2*constr_row,0);
|
|
|
- AddValB(2*constr_row+1,0);
|
|
|
-
|
|
|
- constr_row +=1;
|
|
|
- constr_num++;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-///set the constraints for the inter-range cuts
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::PoissonSolver<DerivedV, DerivedF>::BuildUserDefinedConstraints()
|
|
|
-{
|
|
|
- /// the user defined constraints are at the end
|
|
|
- int offset_row = n_vert_vars*2 + num_cut_constraint*2 + n_fixed_vars*2;
|
|
|
-
|
|
|
- ///current constraint row
|
|
|
- int constr_row = offset_row;
|
|
|
-
|
|
|
- assert(num_userdefined_constraint == userdefined_constraints.size());
|
|
|
-
|
|
|
- for (unsigned int i=0; i<num_userdefined_constraint; i++)
|
|
|
- {
|
|
|
- for (unsigned int j=0; j<userdefined_constraints[i].size()-1; ++j)
|
|
|
- {
|
|
|
- AddValA(constr_row, j , userdefined_constraints[i][j]);
|
|
|
- }
|
|
|
-
|
|
|
- AddValB(constr_row,userdefined_constraints[i][userdefined_constraints[i].size()-1]);
|
|
|
-
|
|
|
- constr_row +=1;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-///call of the mixed integer solver
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::PoissonSolver<DerivedV, DerivedF>::MixedIntegerSolve(double cone_grid_res,
|
|
|
- bool direct_round,
|
|
|
- int localIter)
|
|
|
-{
|
|
|
- X = std::vector<double>((n_vert_vars+n_integer_vars)*2);
|
|
|
-
|
|
|
- ///variables part
|
|
|
- int ScalarSize = n_vert_vars*2;
|
|
|
- int SizeMatrix = (n_vert_vars+n_integer_vars)*2;
|
|
|
-
|
|
|
- if (DEBUGPRINT)
|
|
|
- printf("\n ALLOCATED X \n");
|
|
|
-
|
|
|
- ///matrix A
|
|
|
- gmm::col_matrix< gmm::wsvector< double > > A(SizeMatrix,SizeMatrix); // lhs matrix variables +
|
|
|
-
|
|
|
- ///constraints part
|
|
|
- int CsizeX = num_constraint_equations;
|
|
|
- int CsizeY = SizeMatrix+1;
|
|
|
- gmm::row_matrix< gmm::wsvector< double > > C(CsizeX,CsizeY); // constraints
|
|
|
-
|
|
|
- if (DEBUGPRINT)
|
|
|
- printf("\n ALLOCATED QMM STRUCTURES \n");
|
|
|
-
|
|
|
- std::vector<double> rhs(SizeMatrix,0); // rhs
|
|
|
-
|
|
|
- if (DEBUGPRINT)
|
|
|
- printf("\n ALLOCATED RHS STRUCTURES \n");
|
|
|
-
|
|
|
- //// copy LHS
|
|
|
- for(int i = 0; i < (int)S.A().nentries(); ++i)
|
|
|
- {
|
|
|
- int row = S.A().rowind()[i];
|
|
|
- int col = S.A().colind()[i];
|
|
|
- int size =(int)S.nrows();
|
|
|
- assert(0 <= row && row < size);
|
|
|
- assert(0 <= col && col < size);
|
|
|
-
|
|
|
- // it's either part of the matrix
|
|
|
- if (row < ScalarSize)
|
|
|
- {
|
|
|
- A(row, col) += S.A().vals()[i];
|
|
|
- }
|
|
|
- // or it's a part of the constraint
|
|
|
- else
|
|
|
- {
|
|
|
- assert ((unsigned int)row < (n_vert_vars+num_constraint_equations)*2);
|
|
|
- int r = row - ScalarSize;
|
|
|
- assert(r < CsizeX);
|
|
|
- assert(col < CsizeY);
|
|
|
- C(r , col ) += S.A().vals()[i];
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- if (DEBUGPRINT)
|
|
|
- printf("\n SET %d INTEGER VALUES \n",n_integer_vars);
|
|
|
-
|
|
|
- ///add penalization term for integer variables
|
|
|
- double penalization = 0.000001;
|
|
|
- int offline_index = ScalarSize;
|
|
|
- for(unsigned int i = 0; i < (n_integer_vars)*2; ++i)
|
|
|
- {
|
|
|
- int index=offline_index+i;
|
|
|
- A(index,index)=penalization;
|
|
|
- }
|
|
|
-
|
|
|
- if (DEBUGPRINT)
|
|
|
- printf("\n SET RHS \n");
|
|
|
-
|
|
|
- // copy RHS
|
|
|
- for(int i = 0; i < (int)ScalarSize; ++i)
|
|
|
- {
|
|
|
- rhs[i] = S.getRHSReal(i) * cone_grid_res;
|
|
|
- }
|
|
|
-
|
|
|
- // copy constraint RHS
|
|
|
- if (DEBUGPRINT)
|
|
|
- printf("\n SET %d CONSTRAINTS \n",num_constraint_equations);
|
|
|
-
|
|
|
- for(unsigned int i = 0; i < num_constraint_equations; ++i)
|
|
|
- {
|
|
|
- C(i, SizeMatrix) = -S.getRHSReal(ScalarSize + i) * cone_grid_res;
|
|
|
- }
|
|
|
-
|
|
|
- ///copy values back into S
|
|
|
- COMISO::ConstrainedSolver solver;
|
|
|
-
|
|
|
- solver.misolver().set_local_iters(localIter);
|
|
|
-
|
|
|
- solver.misolver().set_direct_rounding(direct_round);
|
|
|
-
|
|
|
- std::sort(ids_to_round.begin(),ids_to_round.end());
|
|
|
- std::vector<int>::iterator new_end=std::unique(ids_to_round.begin(),ids_to_round.end());
|
|
|
- int dist=distance(ids_to_round.begin(),new_end);
|
|
|
- ids_to_round.resize(dist);
|
|
|
-
|
|
|
- solver.solve( C, A, X, rhs, ids_to_round, 0.0, false, false);
|
|
|
-}
|
|
|
-
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::PoissonSolver<DerivedV, DerivedF>::clearUserConstraint()
|
|
|
-{
|
|
|
- num_userdefined_constraint = 0;
|
|
|
- userdefined_constraints.clear();
|
|
|
-}
|
|
|
-
|
|
|
-template <typename DerivedV, typename DerivedF>
|
|
|
-IGL_INLINE void igl::PoissonSolver<DerivedV, DerivedF>::addSharpEdgeConstraint(int fid, int vid)
|
|
|
-{
|
|
|
- // prepare constraint
|
|
|
- std::vector<int> c(Handle_SystemInfo.num_vert_variables*2 + 1);
|
|
|
-
|
|
|
- for (size_t i = 0; i < c.size(); ++i)
|
|
|
- {
|
|
|
- c[i] = 0;
|
|
|
- }
|
|
|
-
|
|
|
- int v1 = F(fid,vid);
|
|
|
- int v2 = F(fid,(vid+1)%3);
|
|
|
-
|
|
|
- Eigen::Matrix<typename DerivedV::Scalar, 3, 1> e = V.row(v2) - V.row(v1);
|
|
|
- e = e.normalized();
|
|
|
-
|
|
|
- int v1i = HandleS_Index(fid,vid);//GetFirstVertexIndex(v1);
|
|
|
- int v2i = HandleS_Index(fid,(vid+1)%3);//GetFirstVertexIndex(v2);
|
|
|
-
|
|
|
- double d1 = fabs(e.dot(PD1.row(fid).normalized()));
|
|
|
- double d2 = fabs(e.dot(PD2.row(fid).normalized()));
|
|
|
-
|
|
|
- int offset = 0;
|
|
|
-
|
|
|
- if (d1>d2)
|
|
|
- offset = 1;
|
|
|
-
|
|
|
- ids_to_round.push_back((v1i * 2) + offset);
|
|
|
- ids_to_round.push_back((v2i * 2) + offset);
|
|
|
-
|
|
|
- // add constraint
|
|
|
- c[(v1i * 2) + offset] = 1;
|
|
|
- c[(v2i * 2) + offset] = -1;
|
|
|
-
|
|
|
- // add to the user-defined constraints
|
|
|
- num_userdefined_constraint++;
|
|
|
- userdefined_constraints.push_back(c);
|
|
|
-
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-template <typename DerivedV, typename DerivedF, typename DerivedU>
|
|
|
-IGL_INLINE igl::MIQ_class<DerivedV, DerivedF, DerivedU>::MIQ_class(const Eigen::PlainObjectBase<DerivedV> &V_,
|
|
|
- const Eigen::PlainObjectBase<DerivedF> &F_,
|
|
|
- const Eigen::PlainObjectBase<DerivedV> &PD1_combed,
|
|
|
- const Eigen::PlainObjectBase<DerivedV> &PD2_combed,
|
|
|
- // const Eigen::PlainObjectBase<DerivedV> &BIS1_combed,
|
|
|
- // const Eigen::PlainObjectBase<DerivedV> &BIS2_combed,
|
|
|
- const Eigen::Matrix<int, Eigen::Dynamic, 3> &Handle_MMatch,
|
|
|
- const Eigen::Matrix<int, Eigen::Dynamic, 1> &Handle_Singular,
|
|
|
- // const Eigen::Matrix<int, Eigen::Dynamic, 1> &Handle_SingularDegree,
|
|
|
- const Eigen::Matrix<int, Eigen::Dynamic, 3> &Handle_Seams,
|
|
|
- Eigen::PlainObjectBase<DerivedU> &UV,
|
|
|
- Eigen::PlainObjectBase<DerivedF> &FUV,
|
|
|
- double GradientSize,
|
|
|
- double Stiffness,
|
|
|
- bool DirectRound,
|
|
|
- int iter,
|
|
|
- int localIter,
|
|
|
- bool DoRound,
|
|
|
- bool SingularityRound,
|
|
|
- std::vector<int> roundVertices,
|
|
|
- std::vector<std::vector<int> > hardFeatures):
|
|
|
-V(V_),
|
|
|
-F(F_)
|
|
|
-{
|
|
|
- igl::local_basis(V,F,B1,B2,B3);
|
|
|
- igl::triangle_triangle_adjacency(V,F,TT,TTi);
|
|
|
-
|
|
|
- // Prepare indexing for the linear system
|
|
|
- VertexIndexing<DerivedV, DerivedF> VInd(V, F, TT, TTi, /*BIS1_combed, BIS2_combed,*/ Handle_MMatch, /*Handle_Singular, Handle_SingularDegree,*/ Handle_Seams);
|
|
|
-
|
|
|
- VInd.InitMapping();
|
|
|
- VInd.InitFaceIntegerVal();
|
|
|
- VInd.InitSeamInfo();
|
|
|
-
|
|
|
- Eigen::PlainObjectBase<DerivedV> PD1_combed_for_poisson, PD2_combed_for_poisson;
|
|
|
- // Rotate by 90 degrees CCW
|
|
|
- PD1_combed_for_poisson.setZero(PD1_combed.rows(),3);
|
|
|
- PD2_combed_for_poisson.setZero(PD2_combed.rows(),3);
|
|
|
- for (unsigned i=0; i<PD1_combed.rows();++i)
|
|
|
- {
|
|
|
- double n1 = PD1_combed.row(i).norm();
|
|
|
- double n2 = PD2_combed.row(i).norm();
|
|
|
-
|
|
|
- double a1 = atan2(B2.row(i).dot(PD1_combed.row(i)),B1.row(i).dot(PD1_combed.row(i)));
|
|
|
- double a2 = atan2(B2.row(i).dot(PD2_combed.row(i)),B1.row(i).dot(PD2_combed.row(i)));
|
|
|
-
|
|
|
- a1 += M_PI/2;
|
|
|
- a2 += M_PI/2;
|
|
|
-
|
|
|
-
|
|
|
- PD1_combed_for_poisson.row(i) = cos(a1) * B1.row(i) + sin(a1) * B2.row(i);
|
|
|
- PD2_combed_for_poisson.row(i) = cos(a2) * B1.row(i) + sin(a2) * B2.row(i);
|
|
|
-
|
|
|
- PD1_combed_for_poisson.row(i) = PD1_combed_for_poisson.row(i).normalized() * n1;
|
|
|
- PD2_combed_for_poisson.row(i) = PD2_combed_for_poisson.row(i).normalized() * n2;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- // Assemble the system and solve
|
|
|
- PoissonSolver<DerivedV, DerivedF> PSolver(V,
|
|
|
- F,
|
|
|
- TT,
|
|
|
- TTi,
|
|
|
- PD1_combed_for_poisson,
|
|
|
- PD2_combed_for_poisson,
|
|
|
- VInd.HandleS_Index,
|
|
|
- /*VInd.Handle_Singular*/Handle_Singular,
|
|
|
- VInd.Handle_SystemInfo);
|
|
|
- Handle_Stiffness = Eigen::VectorXd::Constant(F.rows(),1);
|
|
|
-
|
|
|
-
|
|
|
- if (iter > 0) // do stiffening
|
|
|
- {
|
|
|
- for (int i=0;i<iter;i++)
|
|
|
- {
|
|
|
- PSolver.SolvePoisson(Handle_Stiffness, GradientSize,1.f,DirectRound,localIter,DoRound,SingularityRound,roundVertices,hardFeatures);
|
|
|
- int nflips=NumFlips(PSolver.WUV);
|
|
|
- bool folded = updateStiffeningJacobianDistorsion(GradientSize,PSolver.WUV);
|
|
|
- printf("ITERATION %d FLIPS %d \n",i,nflips);
|
|
|
- if (!folded)break;
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- PSolver.SolvePoisson(Handle_Stiffness,GradientSize,1.f,DirectRound,localIter,DoRound,SingularityRound,roundVertices,hardFeatures);
|
|
|
- }
|
|
|
-
|
|
|
- int nflips=NumFlips(PSolver.WUV);
|
|
|
- printf("**** END OPTIMIZING #FLIPS %d ****\n",nflips);
|
|
|
-
|
|
|
- fflush(stdout);
|
|
|
- WUV = PSolver.WUV;
|
|
|
-
|
|
|
-}
|
|
|
-
|
|
|
-template <typename DerivedV, typename DerivedF, typename DerivedU>
|
|
|
-IGL_INLINE void igl::MIQ_class<DerivedV, DerivedF, DerivedU>::extractUV(Eigen::PlainObjectBase<DerivedU> &UV_out,
|
|
|
- Eigen::PlainObjectBase<DerivedF> &FUV_out)
|
|
|
-{
|
|
|
- // int f = F.rows();
|
|
|
- int f = WUV.rows();
|
|
|
-
|
|
|
- unsigned vtfaceid[f*3];
|
|
|
- std::vector<double> vtu;
|
|
|
- std::vector<double> vtv;
|
|
|
-
|
|
|
- std::vector<std::vector<double> > listUV;
|
|
|
- unsigned counter = 0;
|
|
|
-
|
|
|
- for (unsigned i=0; i<f; ++i)
|
|
|
- {
|
|
|
- for (unsigned j=0; j<3; ++j)
|
|
|
- {
|
|
|
- std::vector<double> t(3);
|
|
|
- t[0] = WUV(i,j*2 + 0);
|
|
|
- t[1] = WUV(i,j*2 + 1);
|
|
|
- t[2] = counter++;
|
|
|
- listUV.push_back(t);
|
|
|
- }
|
|
|
- }
|
|
|
- std::sort(listUV.begin(),listUV.end());
|
|
|
-
|
|
|
- counter = 0;
|
|
|
- unsigned k = 0;
|
|
|
- while (k < f*3)
|
|
|
- {
|
|
|
- double u = listUV[k][0];
|
|
|
- double v = listUV[k][1];
|
|
|
- unsigned id = round(listUV[k][2]);
|
|
|
-
|
|
|
- vtfaceid[id] = counter;
|
|
|
- vtu.push_back(u);
|
|
|
- vtv.push_back(v);
|
|
|
-
|
|
|
- unsigned j=1;
|
|
|
- while(k+j < f*3 && u == listUV[k+j][0] && v == listUV[k+j][1])
|
|
|
- {
|
|
|
- unsigned tid = round(listUV[k+j][2]);
|
|
|
- vtfaceid[tid] = counter;
|
|
|
- ++j;
|
|
|
- }
|
|
|
- k = k+j;
|
|
|
- counter++;
|
|
|
- }
|
|
|
-
|
|
|
- UV_out.resize(vtu.size(),2);
|
|
|
- for (unsigned i=0; i<vtu.size(); ++i)
|
|
|
- {
|
|
|
- UV_out(i,0) = vtu[i];
|
|
|
- UV_out(i,1) = vtv[i];
|
|
|
- }
|
|
|
-
|
|
|
- FUV_out.resize(f,3);
|
|
|
-
|
|
|
- unsigned vcounter = 0;
|
|
|
- for (unsigned i=0; i<f; ++i)
|
|
|
- {
|
|
|
- FUV_out(i,0) = vtfaceid[vcounter++];
|
|
|
- FUV_out(i,1) = vtfaceid[vcounter++];
|
|
|
- FUV_out(i,2) = vtfaceid[vcounter++];
|
|
|
- }
|
|
|
-
|
|
|
-}
|
|
|
-
|
|
|
-template <typename DerivedV, typename DerivedF, typename DerivedU>
|
|
|
-IGL_INLINE int igl::MIQ_class<DerivedV, DerivedF, DerivedU>::NumFlips(const Eigen::MatrixXd& WUV)
|
|
|
-{
|
|
|
- int numFl=0;
|
|
|
- for (unsigned int i=0;i<F.rows();i++)
|
|
|
- {
|
|
|
- if (IsFlipped(i, WUV))
|
|
|
- numFl++;
|
|
|
- }
|
|
|
- return numFl;
|
|
|
-}
|
|
|
-
|
|
|
-template <typename DerivedV, typename DerivedF, typename DerivedU>
|
|
|
-IGL_INLINE double igl::MIQ_class<DerivedV, DerivedF, DerivedU>::Distortion(int f, double h, const Eigen::MatrixXd& WUV)
|
|
|
-{
|
|
|
- assert(h > 0);
|
|
|
-
|
|
|
- Eigen::Vector2d uv0,uv1,uv2;
|
|
|
-
|
|
|
- uv0 << WUV(f,0), WUV(f,1);
|
|
|
- uv1 << WUV(f,2), WUV(f,3);
|
|
|
- uv2 << WUV(f,4), WUV(f,5);
|
|
|
-
|
|
|
- Eigen::Matrix<typename DerivedV::Scalar, 3, 1> p0 = V.row(F(f,0));
|
|
|
- Eigen::Matrix<typename DerivedV::Scalar, 3, 1> p1 = V.row(F(f,1));
|
|
|
- Eigen::Matrix<typename DerivedV::Scalar, 3, 1> p2 = V.row(F(f,2));
|
|
|
-
|
|
|
- Eigen::Matrix<typename DerivedV::Scalar, 3, 1> norm = (p1 - p0).cross(p2 - p0);
|
|
|
- double area2 = norm.norm();
|
|
|
- double area2_inv = 1.0 / area2;
|
|
|
- norm *= area2_inv;
|
|
|
-
|
|
|
- if (area2 > 0)
|
|
|
- {
|
|
|
- // Singular values of the Jacobian
|
|
|
- Eigen::Matrix<typename DerivedV::Scalar, 3, 1> neg_t0 = norm.cross(p2 - p1);
|
|
|
- Eigen::Matrix<typename DerivedV::Scalar, 3, 1> neg_t1 = norm.cross(p0 - p2);
|
|
|
- Eigen::Matrix<typename DerivedV::Scalar, 3, 1> neg_t2 = norm.cross(p1 - p0);
|
|
|
-
|
|
|
- Eigen::Matrix<typename DerivedV::Scalar, 3, 1> diffu = (neg_t0 * uv0(0) +neg_t1 *uv1(0) + neg_t2 * uv2(0) )*area2_inv;
|
|
|
- Eigen::Matrix<typename DerivedV::Scalar, 3, 1> diffv = (neg_t0 * uv0(1) + neg_t1*uv1(1) + neg_t2*uv2(1) )*area2_inv;
|
|
|
-
|
|
|
- // first fundamental form
|
|
|
- double I00 = diffu.dot(diffu); // guaranteed non-neg
|
|
|
- double I01 = diffu.dot(diffv); // I01 = I10
|
|
|
- double I11 = diffv.dot(diffv); // guaranteed non-neg
|
|
|
-
|
|
|
- // eigenvalues of a 2x2 matrix
|
|
|
- // [a00 a01]
|
|
|
- // [a10 a11]
|
|
|
- // 1/2 * [ (a00 + a11) +/- sqrt((a00 - a11)^2 + 4 a01 a10) ]
|
|
|
- double trI = I00 + I11; // guaranteed non-neg
|
|
|
- double diffDiag = I00 - I11; // guaranteed non-neg
|
|
|
- double sqrtDet = sqrt(std::max(0.0, diffDiag*diffDiag +
|
|
|
- 4 * I01 * I01)); // guaranteed non-neg
|
|
|
- double sig1 = 0.5 * (trI + sqrtDet); // higher singular value
|
|
|
- double sig2 = 0.5 * (trI - sqrtDet); // lower singular value
|
|
|
-
|
|
|
- // Avoid sig2 < 0 due to numerical error
|
|
|
- if (fabs(sig2) < 1.0e-8)
|
|
|
- sig2 = 0;
|
|
|
-
|
|
|
- assert(sig1 >= 0);
|
|
|
- assert(sig2 >= 0);
|
|
|
-
|
|
|
- if (sig2 < 0) {
|
|
|
- printf("Distortion will be NaN! sig1^2 is negative (%lg)\n",
|
|
|
- sig2);
|
|
|
- }
|
|
|
-
|
|
|
- // The singular values of the Jacobian are the sqrts of the
|
|
|
- // eigenvalues of the first fundamental form.
|
|
|
- sig1 = sqrt(sig1);
|
|
|
- sig2 = sqrt(sig2);
|
|
|
-
|
|
|
- // distortion
|
|
|
- double tao = IsFlipped(f,WUV) ? -1 : 1;
|
|
|
- double factor = tao / h;
|
|
|
- double lam = fabs(factor * sig1 - 1) + fabs(factor * sig2 - 1);
|
|
|
- return lam;
|
|
|
- }
|
|
|
- else {
|
|
|
- return 10; // something "large"
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-////////////////////////////////////////////////////////////////////////////
|
|
|
-// Approximate the distortion laplacian using a uniform laplacian on
|
|
|
-// the dual mesh:
|
|
|
-// ___________
|
|
|
-// \-1 / \-1 /
|
|
|
-// \ / 3 \ /
|
|
|
-// \-----/
|
|
|
-// \-1 /
|
|
|
-// \ /
|
|
|
-//
|
|
|
-// @param[in] f facet on which to compute distortion laplacian
|
|
|
-// @param[in] h scaling factor applied to cross field
|
|
|
-// @return distortion laplacian for f
|
|
|
-///////////////////////////////////////////////////////////////////////////
|
|
|
-template <typename DerivedV, typename DerivedF, typename DerivedU>
|
|
|
-IGL_INLINE double igl::MIQ_class<DerivedV, DerivedF, DerivedU>::LaplaceDistortion(const int f, double h, const Eigen::MatrixXd& WUV)
|
|
|
-{
|
|
|
- double mydist = Distortion(f, h, WUV);
|
|
|
- double lapl=0;
|
|
|
- for (int i=0;i<3;i++)
|
|
|
- {
|
|
|
- if (TT(f,i) != -1)
|
|
|
- lapl += (mydist - Distortion(TT(f,i), h, WUV));
|
|
|
- }
|
|
|
- return lapl;
|
|
|
-}
|
|
|
-
|
|
|
-template <typename DerivedV, typename DerivedF, typename DerivedU>
|
|
|
-IGL_INLINE bool igl::MIQ_class<DerivedV, DerivedF, DerivedU>::updateStiffeningJacobianDistorsion(double grad_size, const Eigen::MatrixXd& WUV)
|
|
|
-{
|
|
|
- bool flipped = NumFlips(WUV)>0;
|
|
|
-
|
|
|
- if (!flipped)
|
|
|
- return false;
|
|
|
-
|
|
|
- double maxL=0;
|
|
|
- double maxD=0;
|
|
|
-
|
|
|
- if (flipped)
|
|
|
- {
|
|
|
- const double c = 1.0;
|
|
|
- const double d = 5.0;
|
|
|
-
|
|
|
- for (unsigned int i = 0; i < F.rows(); ++i)
|
|
|
- {
|
|
|
- double dist=Distortion(i,grad_size,WUV);
|
|
|
- if (dist > maxD)
|
|
|
- maxD=dist;
|
|
|
-
|
|
|
- double absLap=fabs(LaplaceDistortion(i, grad_size,WUV));
|
|
|
- if (absLap > maxL)
|
|
|
- maxL = absLap;
|
|
|
-
|
|
|
- double stiffDelta = std::min(c * absLap, d);
|
|
|
-
|
|
|
- Handle_Stiffness[i]+=stiffDelta;
|
|
|
- }
|
|
|
- }
|
|
|
- printf("Maximum Distorsion %4.4f \n",maxD);
|
|
|
- printf("Maximum Laplacian %4.4f \n",maxL);
|
|
|
- return flipped;
|
|
|
-}
|
|
|
-
|
|
|
-template <typename DerivedV, typename DerivedF, typename DerivedU>
|
|
|
-IGL_INLINE bool igl::MIQ_class<DerivedV, DerivedF, DerivedU>::IsFlipped(const Eigen::Vector2d &uv0,
|
|
|
- const Eigen::Vector2d &uv1,
|
|
|
- const Eigen::Vector2d &uv2)
|
|
|
-{
|
|
|
- Eigen::Vector2d e0 = (uv1-uv0);
|
|
|
- Eigen::Vector2d e1 = (uv2-uv0);
|
|
|
-
|
|
|
- double Area = e0(0)*e1(1) - e0(1)*e1(0);
|
|
|
- return (Area<=0);
|
|
|
-}
|
|
|
-
|
|
|
-template <typename DerivedV, typename DerivedF, typename DerivedU>
|
|
|
-IGL_INLINE bool igl::MIQ_class<DerivedV, DerivedF, DerivedU>::IsFlipped(const int i, const Eigen::MatrixXd& WUV)
|
|
|
-{
|
|
|
- Eigen::Vector2d uv0,uv1,uv2;
|
|
|
- uv0 << WUV(i,0), WUV(i,1);
|
|
|
- uv1 << WUV(i,2), WUV(i,3);
|
|
|
- uv2 << WUV(i,4), WUV(i,5);
|
|
|
-
|
|
|
- return (IsFlipped(uv0,uv1,uv2));
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-template <typename DerivedV, typename DerivedF, typename DerivedU>
|
|
|
-IGL_INLINE void igl::miq(const Eigen::PlainObjectBase<DerivedV> &V,
|
|
|
- const Eigen::PlainObjectBase<DerivedF> &F,
|
|
|
- const Eigen::PlainObjectBase<DerivedV> &PD1_combed,
|
|
|
- const Eigen::PlainObjectBase<DerivedV> &PD2_combed,
|
|
|
- // const Eigen::PlainObjectBase<DerivedV> &BIS1_combed,
|
|
|
- // const Eigen::PlainObjectBase<DerivedV> &BIS2_combed,
|
|
|
- const Eigen::Matrix<int, Eigen::Dynamic, 3> &Handle_MMatch,
|
|
|
- const Eigen::Matrix<int, Eigen::Dynamic, 1> &Handle_Singular,
|
|
|
- // const Eigen::Matrix<int, Eigen::Dynamic, 1> &Handle_SingularDegree,
|
|
|
- const Eigen::Matrix<int, Eigen::Dynamic, 3> &Handle_Seams,
|
|
|
- Eigen::PlainObjectBase<DerivedU> &UV,
|
|
|
- Eigen::PlainObjectBase<DerivedF> &FUV,
|
|
|
- double GradientSize,
|
|
|
- double Stiffness,
|
|
|
- bool DirectRound,
|
|
|
- int iter,
|
|
|
- int localIter,
|
|
|
- bool DoRound,
|
|
|
- bool SingularityRound,
|
|
|
- std::vector<int> roundVertices,
|
|
|
- std::vector<std::vector<int> > hardFeatures)
|
|
|
-{
|
|
|
- GradientSize = GradientSize/(V.colwise().maxCoeff()-V.colwise().minCoeff()).norm();
|
|
|
-
|
|
|
- igl::MIQ_class<DerivedV, DerivedF, DerivedU> miq(V,
|
|
|
- F,
|
|
|
- PD1_combed,
|
|
|
- PD2_combed,
|
|
|
- // BIS1_combed,
|
|
|
- // BIS2_combed,
|
|
|
- Handle_MMatch,
|
|
|
- Handle_Singular,
|
|
|
- // Handle_SingularDegree,
|
|
|
- Handle_Seams,
|
|
|
- UV,
|
|
|
- FUV,
|
|
|
- GradientSize,
|
|
|
- Stiffness,
|
|
|
- DirectRound,
|
|
|
- iter,
|
|
|
- localIter,
|
|
|
- DoRound,
|
|
|
- SingularityRound,
|
|
|
- roundVertices,
|
|
|
- hardFeatures);
|
|
|
-
|
|
|
- miq.extractUV(UV,FUV);
|
|
|
-}
|
|
|
-
|
|
|
-template <typename DerivedV, typename DerivedF, typename DerivedU>
|
|
|
-IGL_INLINE void igl::miq(const Eigen::PlainObjectBase<DerivedV> &V,
|
|
|
- const Eigen::PlainObjectBase<DerivedF> &F,
|
|
|
- const Eigen::PlainObjectBase<DerivedV> &PD1,
|
|
|
- const Eigen::PlainObjectBase<DerivedV> &PD2,
|
|
|
- Eigen::PlainObjectBase<DerivedU> &UV,
|
|
|
- Eigen::PlainObjectBase<DerivedF> &FUV,
|
|
|
- double GradientSize,
|
|
|
- double Stiffness,
|
|
|
- bool DirectRound,
|
|
|
- int iter,
|
|
|
- int localIter,
|
|
|
- bool DoRound,
|
|
|
- bool SingularityRound,
|
|
|
- std::vector<int> roundVertices,
|
|
|
- std::vector<std::vector<int> > hardFeatures)
|
|
|
-{
|
|
|
- // Eigen::MatrixXd PD2i = PD2;
|
|
|
- // if (PD2i.size() == 0)
|
|
|
- // {
|
|
|
- // Eigen::MatrixXd B1, B2, B3;
|
|
|
- // igl::local_basis(V,F,B1,B2,B3);
|
|
|
- // PD2i = igl::rotate_vectors(V,Eigen::VectorXd::Constant(1,M_PI/2),B1,B2);
|
|
|
- // }
|
|
|
-
|
|
|
- Eigen::PlainObjectBase<DerivedV> BIS1, BIS2;
|
|
|
- igl::compute_frame_field_bisectors(V, F, PD1, PD2, BIS1, BIS2);
|
|
|
-
|
|
|
- Eigen::PlainObjectBase<DerivedV> BIS1_combed, BIS2_combed;
|
|
|
- igl::comb_cross_field(V, F, BIS1, BIS2, BIS1_combed, BIS2_combed);
|
|
|
-
|
|
|
- Eigen::Matrix<int, Eigen::Dynamic, 3> Handle_MMatch;
|
|
|
- igl::cross_field_missmatch(V, F, BIS1_combed, BIS2_combed, true, Handle_MMatch);
|
|
|
-
|
|
|
- Eigen::Matrix<int, Eigen::Dynamic, 1> isSingularity, singularityIndex;
|
|
|
- igl::find_cross_field_singularities(V, F, Handle_MMatch, isSingularity, singularityIndex);
|
|
|
-
|
|
|
- Eigen::Matrix<int, Eigen::Dynamic, 3> Handle_Seams;
|
|
|
- igl::cut_mesh_from_singularities(V, F, Handle_MMatch, Handle_Seams);
|
|
|
-
|
|
|
- Eigen::PlainObjectBase<DerivedV> PD1_combed, PD2_combed;
|
|
|
- igl::comb_frame_field(V, F, PD1, PD2, BIS1_combed, BIS2_combed, PD1_combed, PD2_combed);
|
|
|
-
|
|
|
- igl::miq(V,
|
|
|
- F,
|
|
|
- PD1_combed,
|
|
|
- PD2_combed,
|
|
|
- // BIS1_combed,
|
|
|
- // BIS2_combed,
|
|
|
- Handle_MMatch,
|
|
|
- isSingularity,
|
|
|
- // singularityIndex,
|
|
|
- Handle_Seams,
|
|
|
- UV,
|
|
|
- FUV,
|
|
|
- GradientSize,
|
|
|
- Stiffness,
|
|
|
- DirectRound,
|
|
|
- iter,
|
|
|
- localIter,
|
|
|
- DoRound,
|
|
|
- SingularityRound,
|
|
|
- roundVertices,
|
|
|
- hardFeatures);
|
|
|
-
|
|
|
-}
|
|
|
-
|
|
|
-#ifdef IGL_STATIC_LIBRARY
|
|
|
-// Explicit template specialization
|
|
|
-// template void igl::miq<Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<int, -1, 3, 0, -1, 3>, Eigen::Matrix<double, -1, 2, 0, -1, 2> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 2, 0, -1, 2> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 3, 0, -1, 3> >&, double, double, bool, int, int, bool, std::__1::vector<int, std::__1::allocator<int> >, std::__1::vector<std::__1::vector<int, std::__1::allocator<int> >, std::__1::allocator<std::__1::vector<int, std::__1::allocator<int> > > >);
|
|
|
-// template void igl::miq<Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<int, -1, 3, 0, -1, 3>, Eigen::Matrix<double, -1, 2, 0, -1, 2> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::Matrix<int, -1, 3, 0, -1, 3> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 2, 0, -1, 2> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 3, 0, -1, 3> >&, double, double, bool, int, int, bool, std::__1::vector<int, std::__1::allocator<int> >, std::__1::vector<std::__1::vector<int, std::__1::allocator<int> >, std::__1::allocator<std::__1::vector<int, std::__1::allocator<int> > > >);
|
|
|
-//template void igl::miq<Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<int, -1, 3, 0, -1, 3>, Eigen::Matrix<double, -1, 2, 0, -1, 2> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::Matrix<int, -1, 3, 0, -1, 3> const&, Eigen::Matrix<int, -1, 1, 0, -1, 1> const&, Eigen::Matrix<int, -1, 3, 0, -1, 3> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 2, 0, -1, 2> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 3, 0, -1, 3> >&, double, double, bool, int, int, bool, std::__1::vector<int, std::__1::allocator<int> >, std::__1::vector<std::__1::vector<int, std::__1::allocator<int> >, std::__1::allocator<std::__1::vector<int, std::__1::allocator<int> > > >);
|
|
|
-#endif
|