|
@@ -5,7 +5,6 @@
|
|
|
#include "EmbreeIntersector.h"
|
|
|
#include <iostream>
|
|
|
#include <random>
|
|
|
-#include <limits>
|
|
|
|
|
|
template <
|
|
|
typename DerivedV,
|
|
@@ -28,12 +27,8 @@ IGL_INLINE void igl::orient_outward_ao(
|
|
|
assert(F.cols() == 3);
|
|
|
assert(V.cols() == 3);
|
|
|
|
|
|
- // pass both sides of faces to Embree
|
|
|
- MatrixXi F2;
|
|
|
- F2.resize(F.rows()*2,F.cols());
|
|
|
- F2 << F, F.rowwise().reverse().eval();
|
|
|
EmbreeIntersector ei;
|
|
|
- ei.init(V.template cast<float>(),F2.template cast<int>());
|
|
|
+ ei.init(V.template cast<float>(),F);
|
|
|
|
|
|
// number of faces
|
|
|
const int m = F.rows();
|
|
@@ -46,7 +41,7 @@ IGL_INLINE void igl::orient_outward_ao(
|
|
|
}
|
|
|
|
|
|
// face normal
|
|
|
- PlainObjectBase<DerivedV> N;
|
|
|
+ MatrixXd N;
|
|
|
per_face_normals(V,F,N);
|
|
|
|
|
|
// face area
|
|
@@ -71,12 +66,12 @@ IGL_INLINE void igl::orient_outward_ao(
|
|
|
|
|
|
// generate all the rays
|
|
|
cout << "generating rays... ";
|
|
|
- uniform_real_distribution<double> rdist;
|
|
|
+ uniform_real_distribution<float> rdist;
|
|
|
mt19937 prng;
|
|
|
- prng.seed(time(0));
|
|
|
+ prng.seed(0);
|
|
|
vector<int > ray_face;
|
|
|
- vector<Vector3d> ray_ori;
|
|
|
- vector<Vector3d> ray_dir;
|
|
|
+ vector<Vector3f> ray_ori;
|
|
|
+ vector<Vector3f> ray_dir;
|
|
|
ray_face.reserve(total_num_rays);
|
|
|
ray_ori .reserve(total_num_rays);
|
|
|
ray_dir .reserve(total_num_rays);
|
|
@@ -98,21 +93,32 @@ IGL_INLINE void igl::orient_outward_ao(
|
|
|
for (int i = 0; i < num_rays_per_component[c]; ++i)
|
|
|
{
|
|
|
int f = CF[ddist(prng)]; // select face with probability proportional to face area
|
|
|
- double t0 = rdist(prng); // random barycentric coordinate
|
|
|
- double t1 = rdist(prng);
|
|
|
- double t2 = rdist(prng);
|
|
|
- double t_sum = t0 + t1 + t2;
|
|
|
+ float t0 = rdist(prng); // random barycentric coordinate
|
|
|
+ float t1 = rdist(prng);
|
|
|
+ float t2 = rdist(prng);
|
|
|
+ float t_sum = t0 + t1 + t2;
|
|
|
t0 /= t_sum;
|
|
|
t1 /= t_sum;
|
|
|
t2 /= t_sum;
|
|
|
- Vector3d p = t0 * V.row(F(f,0)) // be careful with the index!!!
|
|
|
- + t1 * V.row(F(f,1))
|
|
|
- + t2 * V.row(F(f,2));
|
|
|
- Vector3d n = N.row(f);
|
|
|
- Vector3d d = random_dir();
|
|
|
- if (n.dot(d) < 0)
|
|
|
- {
|
|
|
- d *= -1;
|
|
|
+ Vector3f p = t0 * V.row(F(f,0)).template cast<float>().eval() // be careful with the index!!!
|
|
|
+ + t1 * V.row(F(f,1)).template cast<float>().eval()
|
|
|
+ + t2 * V.row(F(f,2)).template cast<float>().eval();
|
|
|
+ Vector3f n = N.row(f).cast<float>();
|
|
|
+ assert(n != Vector3f::Zero());
|
|
|
+ // random direction in hemisphere around n (avoid too grazing angle)
|
|
|
+ Vector3f d;
|
|
|
+ while (true) {
|
|
|
+ d = random_dir().cast<float>();
|
|
|
+ float ndotd = n.dot(d);
|
|
|
+ if (fabsf(ndotd) < 0.1f)
|
|
|
+ {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ if (ndotd < 0)
|
|
|
+ {
|
|
|
+ d *= -1.0f;
|
|
|
+ }
|
|
|
+ break;
|
|
|
}
|
|
|
ray_face.push_back(f);
|
|
|
ray_ori .push_back(p);
|
|
@@ -120,40 +126,53 @@ IGL_INLINE void igl::orient_outward_ao(
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- // per component accumulation of occlusion distance
|
|
|
- double dist_large = (V.colwise().maxCoeff() - V.colwise().minCoeff()).norm() * 1000;
|
|
|
- vector<double> C_occlude_dist_front(num_cc, 0);
|
|
|
- vector<double> C_occlude_dist_back (num_cc, 0);
|
|
|
-
|
|
|
- auto get_dist = [&] (Hit hit, const Vector3d& origin) {
|
|
|
- Vector3d p0 = V.row(F2(hit.id, 0));
|
|
|
- Vector3d p1 = V.row(F2(hit.id, 1));
|
|
|
- Vector3d p2 = V.row(F2(hit.id, 2));
|
|
|
- Vector3d p = (1 - hit.u - hit.v) * p0 + hit.u * p1 + hit.v * p2;
|
|
|
- return (p - origin).norm();
|
|
|
- };
|
|
|
+ // per component voting: first=front, second=back
|
|
|
+ vector<pair<float, float>> C_vote_distance(num_cc, make_pair(0, 0)); // sum of distance between ray origin and intersection
|
|
|
+ vector<pair<int , int >> C_vote_infinity(num_cc, make_pair(0, 0)); // number of rays reaching infinity
|
|
|
|
|
|
cout << "shooting rays... ";
|
|
|
#pragma omp parallel for
|
|
|
for (int i = 0; i < (int)ray_face.size(); ++i)
|
|
|
{
|
|
|
int f = ray_face[i];
|
|
|
- Vector3d o = ray_ori [i];
|
|
|
- Vector3d d = ray_dir [i];
|
|
|
+ Vector3f o = ray_ori [i];
|
|
|
+ Vector3f d = ray_dir [i];
|
|
|
int c = C(f);
|
|
|
- Hit hit_front;
|
|
|
- Hit hit_back;
|
|
|
- double dist_front = ei.intersectRay(o.template cast<float>(), d.template cast<float>(), hit_front) ? get_dist(hit_front, o) : dist_large;
|
|
|
- double dist_back = ei.intersectRay(o.template cast<float>(), -d.template cast<float>(), hit_back ) ? get_dist(hit_back , o) : dist_large;
|
|
|
+
|
|
|
+ // shoot ray toward front & back
|
|
|
+ vector<Hit> hits_front;
|
|
|
+ vector<Hit> hits_back;
|
|
|
+ int num_rays_front;
|
|
|
+ int num_rays_back;
|
|
|
+ ei.intersectRay(o, d, hits_front, num_rays_front);
|
|
|
+ ei.intersectRay(o, -d, hits_back , num_rays_back );
|
|
|
+ if (!hits_front.empty() && hits_front[0].id == f) hits_front.erase(hits_front.begin());
|
|
|
+ if (!hits_back .empty() && hits_back [0].id == f) hits_back .erase(hits_back .begin());
|
|
|
+
|
|
|
+ if (hits_front.empty())
|
|
|
+ {
|
|
|
+#pragma omp atomic
|
|
|
+ C_vote_infinity[c].first++;
|
|
|
+ } else {
|
|
|
#pragma omp atomic
|
|
|
- C_occlude_dist_front[c] += dist_front;
|
|
|
+ C_vote_distance[c].first += hits_front[0].t;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (hits_back.empty())
|
|
|
+ {
|
|
|
#pragma omp atomic
|
|
|
- C_occlude_dist_back [c] += dist_back;
|
|
|
+ C_vote_infinity[c].second++;
|
|
|
+ } else {
|
|
|
+#pragma omp atomic
|
|
|
+ C_vote_distance[c].second += hits_back[0].t;
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
for(int c = 0;c<num_cc;c++)
|
|
|
{
|
|
|
- I(c) = C_occlude_dist_front[c] < C_occlude_dist_back[c];
|
|
|
+ I(c) = C_vote_infinity[c].first == C_vote_infinity[c].second &&
|
|
|
+ C_vote_distance[c].first < C_vote_distance[c].second ||
|
|
|
+ C_vote_infinity[c].first < C_vote_infinity[c].second;
|
|
|
}
|
|
|
// flip according to I
|
|
|
for(int f = 0;f<m;f++)
|