|
@@ -23,7 +23,7 @@ IGL_INLINE void igl::doublearea(
|
|
|
const int dim = V.cols();
|
|
|
// Only support triangles
|
|
|
assert(F.cols() == 3);
|
|
|
- const int m = F.rows();
|
|
|
+ const size_t m = F.rows();
|
|
|
// Compute edge lengths
|
|
|
Eigen::PlainObjectBase<DerivedV> l;
|
|
|
// "Lecture Notes on Geometric Robustness" Shewchuck 09, Section 3.1
|
|
@@ -45,7 +45,7 @@ IGL_INLINE void igl::doublearea(
|
|
|
case 3:
|
|
|
{
|
|
|
dblA = Eigen::PlainObjectBase<DeriveddblA>::Zero(m,1);
|
|
|
- for(int f = 0;f<F.rows();f++)
|
|
|
+ for(size_t f = 0;f<m;f++)
|
|
|
{
|
|
|
for(int d = 0;d<3;d++)
|
|
|
{
|
|
@@ -59,7 +59,7 @@ IGL_INLINE void igl::doublearea(
|
|
|
case 2:
|
|
|
{
|
|
|
dblA.resize(m,1);
|
|
|
- for(int f = 0;f<m;f++)
|
|
|
+ for(size_t f = 0;f<m;f++)
|
|
|
{
|
|
|
dblA(f) = proj_doublearea(0,1,f);
|
|
|
}
|
|
@@ -118,7 +118,7 @@ IGL_INLINE void igl::doublearea(
|
|
|
// Only support triangles
|
|
|
assert(ul.cols() == 3);
|
|
|
// Number of triangles
|
|
|
- const int m = ul.rows();
|
|
|
+ const size_t m = ul.rows();
|
|
|
Eigen::PlainObjectBase<Derivedl> l;
|
|
|
MatrixXi _;
|
|
|
sort(ul,2,false,l,_);
|
|
@@ -132,7 +132,7 @@ IGL_INLINE void igl::doublearea(
|
|
|
# define IGL_OMP_MIN_VALUE 1000
|
|
|
#endif
|
|
|
#pragma omp parallel for if (m>IGL_OMP_MIN_VALUE)
|
|
|
- for(int i = 0;i<m;i++)
|
|
|
+ for(size_t i = 0;i<m;i++)
|
|
|
{
|
|
|
//// Heron's formula for area
|
|
|
//const typename Derivedl::Scalar arg =
|
|
@@ -159,12 +159,12 @@ Eigen::PlainObjectBase<DeriveddblA> & dblA)
|
|
|
{
|
|
|
assert(V.cols() == 3); // Only supports points in 3D
|
|
|
assert(F.cols() == 4); // Only support quads
|
|
|
- const int m = F.rows();
|
|
|
+ const size_t m = F.rows();
|
|
|
|
|
|
// Split the quads into triangles
|
|
|
Eigen::MatrixXi Ft(F.rows()*2,3);
|
|
|
|
|
|
- for(unsigned i=0; i<F.rows();++i)
|
|
|
+ for(size_t i=0; i<m;++i)
|
|
|
{
|
|
|
Ft.row(i*2 ) << F(i,0), F(i,1), F(i,2);
|
|
|
Ft.row(i*2 + 1) << F(i,2), F(i,3), F(i,0);
|