|
@@ -0,0 +1,140 @@
|
|
|
+#include "sparse_voxel_grid.h"
|
|
|
+
|
|
|
+#include <unordered_map>
|
|
|
+#include <array>
|
|
|
+#include <vector>
|
|
|
+
|
|
|
+
|
|
|
+template <typename DerivedS, typename DerivedP0, typename DerivedV, typename DerivedI>
|
|
|
+IGL_INLINE void igl::sparse_voxel_grid(const Eigen::MatrixBase<DerivedP0>& p0,
|
|
|
+ const std::function<typename DerivedS::Scalar(const DerivedP0&)>& scalarFunc,
|
|
|
+ const double eps,
|
|
|
+ Eigen::PlainObjectBase<DerivedS>& CS,
|
|
|
+ Eigen::PlainObjectBase<DerivedV>& CV,
|
|
|
+ Eigen::PlainObjectBase<DerivedI>& CI,
|
|
|
+ int expected_number_of_cubes)
|
|
|
+{
|
|
|
+ typedef typename DerivedV::Scalar ScalarV;
|
|
|
+ typedef typename DerivedS::Scalar ScalarS;
|
|
|
+ typedef typename DerivedI::Scalar ScalarI;
|
|
|
+ typedef Eigen::Matrix<ScalarV, 1, 3> VertexRowVector;
|
|
|
+ typedef Eigen::Matrix<ScalarI, 1, 8> IndexRowVector;
|
|
|
+
|
|
|
+
|
|
|
+ struct IndexRowVectorHash {
|
|
|
+ std::size_t operator()(const Eigen::RowVector3i& key) const {
|
|
|
+ std::size_t seed = 0;
|
|
|
+ std::hash<int> hasher;
|
|
|
+ for (int i = 0; i < 3; i++) {
|
|
|
+ seed ^= hasher(key[i]) + 0x9e3779b9 + (seed<<6) + (seed>>2); // Copied from boost::hash_combine
|
|
|
+ }
|
|
|
+ return seed;
|
|
|
+ }
|
|
|
+ };
|
|
|
+
|
|
|
+ auto sgn = [](ScalarS val) -> int {
|
|
|
+ return (ScalarS(0) < val) - (val < ScalarS(0));
|
|
|
+ };
|
|
|
+
|
|
|
+ ScalarV half_eps = 0.5 * eps;
|
|
|
+
|
|
|
+ std::vector<IndexRowVector> CI_vector(expected_number_of_cubes);
|
|
|
+ std::vector<VertexRowVector> CV_vector(8*expected_number_of_cubes);
|
|
|
+ std::vector<ScalarS> CS_vector(8*expected_number_of_cubes);
|
|
|
+
|
|
|
+ // Track visisted neighbors
|
|
|
+ std::unordered_map<Eigen::RowVector3i, int, IndexRowVectorHash> visited(6*expected_number_of_cubes);
|
|
|
+
|
|
|
+ // BFS Queue
|
|
|
+ std::vector<Eigen::RowVector3i> queue(expected_number_of_cubes*8);
|
|
|
+ queue.push_back(Eigen::RowVector3i(0, 0, 0));
|
|
|
+ while (queue.size() > 0)
|
|
|
+ {
|
|
|
+ Eigen::RowVector3i pi = queue.back();
|
|
|
+ queue.pop_back();
|
|
|
+
|
|
|
+ VertexRowVector ctr = p0 + eps*pi.cast<ScalarV>(); // R^3 center of this cube
|
|
|
+
|
|
|
+ // X, Y, Z basis vectors, and array of neighbor offsets used to construct cubes
|
|
|
+ const Eigen::RowVector3i bx(1, 0, 0), by(0, 1, 0), bz(0, 0, -1);
|
|
|
+ const std::array<Eigen::RowVector3i, 6> neighbors = {
|
|
|
+ bx, -bx, by, -by, bz, -bz
|
|
|
+ };
|
|
|
+
|
|
|
+ // Compute the position of the cube corners and the scalar values at those corners
|
|
|
+ std::array<VertexRowVector, 8> cubeCorners = {
|
|
|
+ ctr+half_eps*(bx+by+bz).cast<ScalarV>(), ctr+half_eps*(bx+by-bz).cast<ScalarV>(), ctr+half_eps*(-bx+by-bz).cast<ScalarV>(), ctr+half_eps*(-bx+by+bz).cast<ScalarV>(),
|
|
|
+ ctr+half_eps*(bx-by+bz).cast<ScalarV>(), ctr+half_eps*(bx-by-bz).cast<ScalarV>(), ctr+half_eps*(-bx-by-bz).cast<ScalarV>(), ctr+half_eps*(-bx-by+bz).cast<ScalarV>()
|
|
|
+ };
|
|
|
+ std::array<ScalarS, 8> cubeScalars;
|
|
|
+ for (int i = 0; i < 8; i++) { cubeScalars[i] = scalarFunc(cubeCorners[i]); }
|
|
|
+
|
|
|
+ // If this cube doesn't intersect the surface, disregard it
|
|
|
+ bool validCube = false;
|
|
|
+ int sign = sgn(cubeScalars[0]);
|
|
|
+ for (int i = 1; i < 8; i++) {
|
|
|
+ if (sign != sgn(cubeScalars[i])) {
|
|
|
+ validCube = true;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if (!validCube) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Add the cube vertices and indices to the output arrays if they are not there already
|
|
|
+ IndexRowVector cube;
|
|
|
+ uint8_t vertexAlreadyAdded = 0; // This is a bimask. If a bit is 1, it has been visited already by the BFS
|
|
|
+ constexpr std::array<uint8_t, 6> zv = {
|
|
|
+ (1 << 0) | (1 << 1) | (1 << 4) | (1 << 5),
|
|
|
+ (1 << 2) | (1 << 3) | (1 << 6) | (1 << 7),
|
|
|
+ (1 << 0) | (1 << 1) | (1 << 2) | (1 << 3),
|
|
|
+ (1 << 4) | (1 << 5) | (1 << 6) | (1 << 7),
|
|
|
+ (1 << 0) | (1 << 3) | (1 << 4) | (1 << 7),
|
|
|
+ (1 << 1) | (1 << 2) | (1 << 5) | (1 << 6), };
|
|
|
+ constexpr std::array<std::array<int, 4>, 6> zvv {{
|
|
|
+ {{0, 1, 4, 5}}, {{3, 2, 7, 6}}, {{0, 1, 2, 3}},
|
|
|
+ {{4, 5, 6, 7}}, {{0, 3, 4, 7}}, {{1, 2, 5, 6}} }};
|
|
|
+
|
|
|
+ for (int n = 0; n < 6; n++) { // For each neighbor, check the hash table to see if its been added before
|
|
|
+ Eigen::RowVector3i nkey = pi + neighbors[n];
|
|
|
+ auto nbr = visited.find(nkey);
|
|
|
+ if (nbr != visited.end()) { // We've already visited this neighbor, use references to its vertices instead of duplicating them
|
|
|
+ vertexAlreadyAdded |= zv[n];
|
|
|
+ for (int i = 0; i < 4; i++) { cube[zvv[n][i]] = CI_vector[nbr->second][zvv[n % 2 == 0 ? n + 1 : n - 1][i]]; }
|
|
|
+ } else {
|
|
|
+ queue.push_back(nkey); // Otherwise, we have not visited the neighbor, put it in the BFS queue
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ for (int i = 0; i < 8; i++) { // Add new, non-visited,2 vertices to the arrays
|
|
|
+ if (0 == ((1 << i) & vertexAlreadyAdded)) {
|
|
|
+ cube[i] = CS_vector.size();
|
|
|
+ CV_vector.push_back(cubeCorners[i]);
|
|
|
+ CS_vector.push_back(cubeScalars[i]);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ visited[pi] = CI_vector.size();
|
|
|
+ CI_vector.push_back(cube);
|
|
|
+ }
|
|
|
+
|
|
|
+ CV.conservativeResize(CV_vector.size(), 3);
|
|
|
+ CS.conservativeResize(CS_vector.size(), 1);
|
|
|
+ CI.conservativeResize(CI_vector.size(), 8);
|
|
|
+ // If you pass in column-major matrices, this is going to be slooooowwwww
|
|
|
+ for (int i = 0; i < CV_vector.size(); i++) {
|
|
|
+ CV.row(i) = CV_vector[i];
|
|
|
+ }
|
|
|
+ for (int i = 0; i < CS_vector.size(); i++) {
|
|
|
+ CS[i] = CS_vector[i];
|
|
|
+ }
|
|
|
+ for (int i = 0; i < CI_vector.size(); i++) {
|
|
|
+ CI.row(i) = CI_vector[i];
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+#ifdef IGL_STATIC_LIBRARY
|
|
|
+template void igl::sparse_voxel_grid<Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, 1, 3, 1, 1, 3>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1> >(Eigen::MatrixBase<Eigen::Matrix<double, 1, 3, 1, 1, 3> > const&, std::function<Eigen::Matrix<double, -1, 1, 0, -1, 1>::Scalar (Eigen::Matrix<double, 1, 3, 1, 1, 3> const&)> const&, double, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, int);
|
|
|
+#endif
|