|
@@ -14,10 +14,12 @@
|
|
|
#include <igl/per_face_normals.h>
|
|
|
|
|
|
#include <stdexcept>
|
|
|
+#include "../../PI.h"
|
|
|
|
|
|
#include <Eigen/Geometry>
|
|
|
#include <Eigen/Sparse>
|
|
|
#include <queue>
|
|
|
+#include <vector>
|
|
|
|
|
|
#include <gmm/gmm.h>
|
|
|
#include <CoMISo/Solver/ConstrainedSolver.hh>
|
|
@@ -39,19 +41,19 @@ public:
|
|
|
|
|
|
// Generate the N-rosy field
|
|
|
// N degree of the rosy field
|
|
|
- // roundseparately: round the integer variables one at a time, slower but higher quality
|
|
|
- IGL_INLINE void solve(const int N = 4);
|
|
|
+ // round separately: round the integer variables one at a time, slower but higher quality
|
|
|
+ IGL_INLINE void solve(int N = 4);
|
|
|
|
|
|
// Set a hard constraint on fid
|
|
|
// fid: face id
|
|
|
// v: direction to fix (in 3d)
|
|
|
- IGL_INLINE void setConstraintHard(const int fid, const Eigen::Vector3d& v);
|
|
|
+ IGL_INLINE void setConstraintHard(int fid, const Eigen::Vector3d& v);
|
|
|
|
|
|
// Set a soft constraint on fid
|
|
|
// fid: face id
|
|
|
// w: weight of the soft constraint, clipped between 0 and 1
|
|
|
// v: direction to fix (in 3d)
|
|
|
- IGL_INLINE void setConstraintSoft(const int fid, const double w, const Eigen::Vector3d& v);
|
|
|
+ IGL_INLINE void setConstraintSoft(int fid, double w, const Eigen::Vector3d& v);
|
|
|
|
|
|
// Set the ratio between smoothness and soft constraints (0 -> smoothness only, 1 -> soft constr only)
|
|
|
IGL_INLINE void setSoftAlpha(double alpha);
|
|
@@ -62,9 +64,6 @@ public:
|
|
|
// Return the current field
|
|
|
IGL_INLINE Eigen::MatrixXd getFieldPerFace();
|
|
|
|
|
|
- // Return the current field (in Ahish's ffield format)
|
|
|
- IGL_INLINE Eigen::MatrixXd getFFieldPerFace();
|
|
|
-
|
|
|
// Compute singularity indexes
|
|
|
IGL_INLINE void findCones(int N);
|
|
|
|
|
@@ -72,7 +71,6 @@ public:
|
|
|
IGL_INLINE Eigen::VectorXd getSingularityIndexPerVertex();
|
|
|
|
|
|
private:
|
|
|
-
|
|
|
// Compute angle differences between reference frames
|
|
|
IGL_INLINE void computek();
|
|
|
|
|
@@ -80,20 +78,11 @@ private:
|
|
|
IGL_INLINE void reduceSpace();
|
|
|
|
|
|
// Prepare the system matrix
|
|
|
- IGL_INLINE void prepareSystemMatrix(const int N);
|
|
|
-
|
|
|
- // Solve without roundings
|
|
|
- IGL_INLINE void solveNoRoundings();
|
|
|
+ IGL_INLINE void prepareSystemMatrix(int N);
|
|
|
|
|
|
// Solve with roundings using CoMIso
|
|
|
IGL_INLINE void solveRoundings();
|
|
|
|
|
|
- // Round all p to 0 and fix
|
|
|
- IGL_INLINE void roundAndFixToZero();
|
|
|
-
|
|
|
- // Round all p and fix
|
|
|
- IGL_INLINE void roundAndFix();
|
|
|
-
|
|
|
// Convert a vector in 3d to an angle wrt the local reference system
|
|
|
IGL_INLINE double convert3DtoLocal(unsigned fid, const Eigen::Vector3d& v);
|
|
|
|
|
@@ -113,7 +102,7 @@ private:
|
|
|
// Soft constraints
|
|
|
Eigen::VectorXd soft;
|
|
|
Eigen::VectorXd wSoft;
|
|
|
- double softAlpha;
|
|
|
+ double softAlpha;
|
|
|
|
|
|
// Face Topology
|
|
|
Eigen::MatrixXi TT, TTi;
|
|
@@ -157,16 +146,12 @@ private:
|
|
|
|
|
|
igl::copyleft::comiso::NRosyField::NRosyField(const Eigen::MatrixXd& _V, const Eigen::MatrixXi& _F)
|
|
|
{
|
|
|
- using namespace std;
|
|
|
- using namespace Eigen;
|
|
|
-
|
|
|
V = _V;
|
|
|
F = _F;
|
|
|
|
|
|
assert(V.rows() > 0);
|
|
|
assert(F.rows() > 0);
|
|
|
|
|
|
-
|
|
|
// Generate topological relations
|
|
|
igl::triangle_triangle_adjacency(F,TT,TTi);
|
|
|
igl::edge_topology(V,F, EV, FE, EF);
|
|
@@ -183,30 +168,29 @@ igl::copyleft::comiso::NRosyField::NRosyField(const Eigen::MatrixXd& _V, const E
|
|
|
for(unsigned fid=0; fid<F.rows(); ++fid)
|
|
|
{
|
|
|
// First edge
|
|
|
- Vector3d e1 = V.row(F(fid,1)) - V.row(F(fid,0));
|
|
|
+ Eigen::Vector3d e1 = V.row(F(fid,1)) - V.row(F(fid,0));
|
|
|
e1.normalize();
|
|
|
- Vector3d e2 = N.row(fid);
|
|
|
+ Eigen::Vector3d e2 = N.row(fid);
|
|
|
e2 = e2.cross(e1);
|
|
|
e2.normalize();
|
|
|
|
|
|
- MatrixXd TP(2,3);
|
|
|
+ Eigen::MatrixXd TP(2,3);
|
|
|
TP << e1.transpose(), e2.transpose();
|
|
|
TPs.push_back(TP);
|
|
|
}
|
|
|
|
|
|
// Alloc internal variables
|
|
|
- angles = VectorXd::Zero(F.rows());
|
|
|
- p = VectorXi::Zero(EV.rows());
|
|
|
+ angles = Eigen::VectorXd::Zero(F.rows());
|
|
|
+ p = Eigen::VectorXi::Zero(EV.rows());
|
|
|
pFixed.resize(EV.rows());
|
|
|
- k = VectorXd::Zero(EV.rows());
|
|
|
- singularityIndex = VectorXd::Zero(V.rows());
|
|
|
+ k = Eigen::VectorXd::Zero(EV.rows());
|
|
|
+ singularityIndex = Eigen::VectorXd::Zero(V.rows());
|
|
|
|
|
|
// Reset the constraints
|
|
|
resetConstraints();
|
|
|
|
|
|
// Compute k, differences between reference frames
|
|
|
computek();
|
|
|
-
|
|
|
softAlpha = 0.5;
|
|
|
}
|
|
|
|
|
@@ -219,9 +203,6 @@ void igl::copyleft::comiso::NRosyField::setSoftAlpha(double alpha)
|
|
|
|
|
|
void igl::copyleft::comiso::NRosyField::prepareSystemMatrix(const int N)
|
|
|
{
|
|
|
- using namespace std;
|
|
|
- using namespace Eigen;
|
|
|
-
|
|
|
double Nd = N;
|
|
|
|
|
|
// Minimize the MIQ energy
|
|
@@ -238,9 +219,9 @@ void igl::copyleft::comiso::NRosyField::prepareSystemMatrix(const int N)
|
|
|
// pij [ 4pi/N -4pi/N 2*(2pi/N)^2 4pi/N ]
|
|
|
|
|
|
// Count and tag the variables
|
|
|
- tag_t = VectorXi::Constant(F.rows(),-1);
|
|
|
- vector<int> id_t;
|
|
|
- int count = 0;
|
|
|
+ tag_t = Eigen::VectorXi::Constant(F.rows(),-1);
|
|
|
+ std::vector<int> id_t;
|
|
|
+ size_t count = 0;
|
|
|
for(unsigned i=0; i<F.rows(); ++i)
|
|
|
if (!isHard[i])
|
|
|
{
|
|
@@ -248,10 +229,10 @@ void igl::copyleft::comiso::NRosyField::prepareSystemMatrix(const int N)
|
|
|
id_t.push_back(i);
|
|
|
}
|
|
|
|
|
|
- unsigned count_t = id_t.size();
|
|
|
+ size_t count_t = id_t.size();
|
|
|
|
|
|
- tag_p = VectorXi::Constant(EF.rows(),-1);
|
|
|
- vector<int> id_p;
|
|
|
+ tag_p = Eigen::VectorXi::Constant(EF.rows(),-1);
|
|
|
+ std::vector<int> id_p;
|
|
|
for(unsigned i=0; i<EF.rows(); ++i)
|
|
|
{
|
|
|
if (!pFixed[i])
|
|
@@ -272,20 +253,20 @@ void igl::copyleft::comiso::NRosyField::prepareSystemMatrix(const int N)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- unsigned count_p = count - count_t;
|
|
|
+ size_t count_p = count - count_t;
|
|
|
// System sizes: A (count_t + count_p) x (count_t + count_p)
|
|
|
// b (count_t + count_p)
|
|
|
|
|
|
- b = VectorXd::Zero(count_t + count_p);
|
|
|
+ b.resize(count_t + count_p);
|
|
|
+ b.setZero();
|
|
|
|
|
|
std::vector<Eigen::Triplet<double> > T;
|
|
|
T.reserve(3 * 4 * count_p);
|
|
|
|
|
|
- for(unsigned r=0; r<id_p.size(); ++r)
|
|
|
+ for(auto eid : id_p)
|
|
|
{
|
|
|
- int eid = id_p[r];
|
|
|
- int i = EF(eid,0);
|
|
|
- int j = EF(eid,1);
|
|
|
+ int i = EF(eid, 0);
|
|
|
+ int j = EF(eid, 1);
|
|
|
bool isFixed_i = isHard[i];
|
|
|
bool isFixed_j = isHard[j];
|
|
|
bool isFixed_p = pFixed[eid];
|
|
@@ -294,18 +275,15 @@ void igl::copyleft::comiso::NRosyField::prepareSystemMatrix(const int N)
|
|
|
if (!isFixed_i)
|
|
|
{
|
|
|
row = tag_t[i];
|
|
|
- if (isFixed_i)
|
|
|
- b(row) += -2 * hard[i];
|
|
|
- else
|
|
|
- T.emplace_back(row, tag_t[i], 2);
|
|
|
+ T.emplace_back(row, tag_t[i], 2);
|
|
|
if (isFixed_j)
|
|
|
b(row) += 2 * hard[j];
|
|
|
else
|
|
|
T.emplace_back(row, tag_t[j], -2);
|
|
|
if (isFixed_p)
|
|
|
- b(row) += -((4 * igl::PI)/Nd) * p[eid];
|
|
|
+ b(row) += -((4. * igl::PI) / Nd) * p[eid];
|
|
|
else
|
|
|
- T.emplace_back(row, tag_p[eid],((4 * igl::PI)/Nd));
|
|
|
+ T.emplace_back(row, tag_p[eid], ((4. * igl::PI) / Nd));
|
|
|
b(row) += -2 * k[eid];
|
|
|
assert(hard[i] == hard[i]);
|
|
|
assert(hard[j] == hard[j]);
|
|
@@ -317,18 +295,15 @@ void igl::copyleft::comiso::NRosyField::prepareSystemMatrix(const int N)
|
|
|
if (!isFixed_j)
|
|
|
{
|
|
|
row = tag_t[j];
|
|
|
+ T.emplace_back(row, tag_t[j], 2);
|
|
|
if (isFixed_i)
|
|
|
b(row) += 2 * hard[i];
|
|
|
else
|
|
|
- T.emplace_back(row,tag_t[i], -2);
|
|
|
- if (isFixed_j)
|
|
|
- b(row) += -2 * hard[j];
|
|
|
- else
|
|
|
- T.emplace_back(row, tag_t[j], 2);
|
|
|
+ T.emplace_back(row, tag_t[i], -2);
|
|
|
if (isFixed_p)
|
|
|
- b(row) += (( 4. * igl::PI)/Nd) * p[eid];
|
|
|
+ b(row) += ((4. * igl::PI) / Nd) * p[eid];
|
|
|
else
|
|
|
- T.emplace_back(row, tag_p[eid], -((4. * igl::PI)/Nd));
|
|
|
+ T.emplace_back(row, tag_p[eid], -((4. * igl::PI) / Nd));
|
|
|
b(row) += 2 * k[eid];
|
|
|
assert(k[eid] == k[eid]);
|
|
|
assert(b(row) == b(row));
|
|
@@ -337,26 +312,22 @@ void igl::copyleft::comiso::NRosyField::prepareSystemMatrix(const int N)
|
|
|
if (!isFixed_p)
|
|
|
{
|
|
|
row = tag_p[eid];
|
|
|
+ T.emplace_back(row, tag_p[eid], (2. * pow(((2. * igl::PI) / Nd), 2)));
|
|
|
if (isFixed_i)
|
|
|
- b(row) += -(4. * igl::PI)/Nd * hard[i];
|
|
|
+ b(row) += -(4. * igl::PI) / Nd * hard[i];
|
|
|
else
|
|
|
- T.emplace_back(row, tag_t[i], (4. * igl::PI)/Nd);
|
|
|
+ T.emplace_back(row, tag_t[i], (4. * igl::PI) / Nd);
|
|
|
if (isFixed_j)
|
|
|
- b(row) += (4. * igl::PI)/Nd * hard[j];
|
|
|
- else
|
|
|
- T.emplace_back(row, tag_t[j], -(4. * igl::PI)/Nd);
|
|
|
- if (isFixed_p)
|
|
|
- b(row) += -(2. * pow (((2. * igl::PI)/Nd), 2)) * p[eid];
|
|
|
+ b(row) += (4. * igl::PI) / Nd * hard[j];
|
|
|
else
|
|
|
- T.emplace_back(row, tag_p[eid], (2. * pow(((2. * igl::PI)/Nd), 2)));
|
|
|
- b(row) += - ( 4. * igl::PI ) / Nd * k[eid];
|
|
|
+ T.emplace_back(row,tag_t[j], -(4. * igl::PI) / Nd);
|
|
|
+ b(row) += - (4 * igl::PI)/Nd * k[eid];
|
|
|
assert(k[eid] == k[eid]);
|
|
|
assert(b(row) == b(row));
|
|
|
}
|
|
|
-
|
|
|
}
|
|
|
|
|
|
- A = SparseMatrix<double>(count_t + count_p, count_t + count_p);
|
|
|
+ A.resize(count_t + count_p, count_t + count_p);
|
|
|
A.setFromTriplets(T.begin(), T.end());
|
|
|
|
|
|
// Soft constraints
|
|
@@ -368,10 +339,7 @@ void igl::copyleft::comiso::NRosyField::prepareSystemMatrix(const int N)
|
|
|
|
|
|
if (addSoft)
|
|
|
{
|
|
|
- cerr << " Adding soft here: " << endl;
|
|
|
- cerr << " softAplha: " << softAlpha << endl;
|
|
|
- VectorXd bSoft = VectorXd::Zero(count_t + count_p);
|
|
|
-
|
|
|
+ Eigen::VectorXd bSoft = Eigen::VectorXd::Zero(count_t + count_p);
|
|
|
std::vector<Eigen::Triplet<double> > TSoft;
|
|
|
TSoft.reserve(2 * count_p);
|
|
|
|
|
@@ -380,75 +348,36 @@ void igl::copyleft::comiso::NRosyField::prepareSystemMatrix(const int N)
|
|
|
int varid = tag_t[i];
|
|
|
if (varid != -1) // if it is a variable in the system
|
|
|
{
|
|
|
- TSoft.push_back(Eigen::Triplet<double>(varid,varid,wSoft[i]));
|
|
|
+ TSoft.emplace_back(varid, varid, wSoft[i]);
|
|
|
bSoft[varid] += wSoft[i] * soft[i];
|
|
|
}
|
|
|
}
|
|
|
- SparseMatrix<double> ASoft(count_t + count_p, count_t + count_p);
|
|
|
+ Eigen::SparseMatrix<double> ASoft(count_t + count_p, count_t + count_p);
|
|
|
ASoft.setFromTriplets(TSoft.begin(), TSoft.end());
|
|
|
|
|
|
- // Stupid Eigen bug
|
|
|
- SparseMatrix<double> Atmp (count_t + count_p, count_t + count_p);
|
|
|
- SparseMatrix<double> Atmp2(count_t + count_p, count_t + count_p);
|
|
|
- SparseMatrix<double> Atmp3(count_t + count_p, count_t + count_p);
|
|
|
-
|
|
|
- // Merge the two part of the energy
|
|
|
- Atmp = (1.0 - softAlpha)*A;
|
|
|
- Atmp2 = softAlpha * ASoft;
|
|
|
- Atmp3 = Atmp+Atmp2;
|
|
|
-
|
|
|
- A = Atmp3;
|
|
|
- b = b*(1.0 - softAlpha) + bSoft * softAlpha;
|
|
|
+ A = (1.0 - softAlpha) * A + softAlpha * ASoft;
|
|
|
+ b = b * (1.0 - softAlpha) + bSoft * softAlpha;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-void igl::copyleft::comiso::NRosyField::solveNoRoundings()
|
|
|
-{
|
|
|
- using namespace std;
|
|
|
- using namespace Eigen;
|
|
|
-
|
|
|
- // Solve the linear system
|
|
|
- SimplicialLDLT<SparseMatrix<double> > solver;
|
|
|
- solver.compute(A);
|
|
|
- VectorXd x = solver.solve(b);
|
|
|
-
|
|
|
- // Copy the result back
|
|
|
- for(unsigned i=0; i<F.rows(); ++i)
|
|
|
- if (tag_t[i] != -1)
|
|
|
- angles[i] = x(tag_t[i]);
|
|
|
- else
|
|
|
- angles[i] = hard[i];
|
|
|
-
|
|
|
- for(unsigned i=0; i<EF.rows(); ++i)
|
|
|
- if(tag_p[i] != -1)
|
|
|
- p[i] = roundl(x[tag_p[i]]);
|
|
|
-}
|
|
|
-
|
|
|
void igl::copyleft::comiso::NRosyField::solveRoundings()
|
|
|
{
|
|
|
- using namespace std;
|
|
|
- using namespace Eigen;
|
|
|
-
|
|
|
unsigned n = A.rows();
|
|
|
|
|
|
- gmm::col_matrix< gmm::wsvector< double > > gmm_A;
|
|
|
- std::vector<double> gmm_b;
|
|
|
+ gmm::col_matrix< gmm::wsvector< double > > gmm_A(n, n);
|
|
|
+ std::vector<double> gmm_b(n);
|
|
|
std::vector<int> ids_to_round;
|
|
|
- std::vector<double> x;
|
|
|
-
|
|
|
- gmm_A.resize(n,n);
|
|
|
- gmm_b.resize(n);
|
|
|
- x.resize(n);
|
|
|
+ std::vector<double> x(n);
|
|
|
|
|
|
// Copy A
|
|
|
for (int k=0; k<A.outerSize(); ++k)
|
|
|
- for (SparseMatrix<double>::InnerIterator it(A,k); it; ++it)
|
|
|
+ for (Eigen::SparseMatrix<double>::InnerIterator it(A, k); it; ++it)
|
|
|
{
|
|
|
gmm_A(it.row(),it.col()) += it.value();
|
|
|
}
|
|
|
|
|
|
// Copy b
|
|
|
- for(unsigned i=0; i<n;++i)
|
|
|
+ for(unsigned int i = 0; i < n;++i)
|
|
|
gmm_b[i] = b[i];
|
|
|
|
|
|
// Set variables to round
|
|
@@ -472,26 +401,10 @@ void igl::copyleft::comiso::NRosyField::solveRoundings()
|
|
|
|
|
|
for(unsigned i=0; i<EF.rows(); ++i)
|
|
|
if(tag_p[i] != -1)
|
|
|
- p[i] = roundl(x[tag_p[i]]);
|
|
|
-
|
|
|
+ p[i] = (int)std::round(x[tag_p[i]]);
|
|
|
}
|
|
|
|
|
|
|
|
|
-void igl::copyleft::comiso::NRosyField::roundAndFix()
|
|
|
-{
|
|
|
- for(unsigned i=0; i<p.rows(); ++i)
|
|
|
- pFixed[i] = true;
|
|
|
-}
|
|
|
-
|
|
|
-void igl::copyleft::comiso::NRosyField::roundAndFixToZero()
|
|
|
-{
|
|
|
- for(unsigned i=0; i<p.rows(); ++i)
|
|
|
- {
|
|
|
- pFixed[i] = true;
|
|
|
- p[i] = 0;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
void igl::copyleft::comiso::NRosyField::solve(const int N)
|
|
|
{
|
|
|
// Reduce the search space by fixing matchings
|
|
@@ -521,65 +434,34 @@ void igl::copyleft::comiso::NRosyField::setConstraintSoft(const int fid, const d
|
|
|
|
|
|
void igl::copyleft::comiso::NRosyField::resetConstraints()
|
|
|
{
|
|
|
- using namespace std;
|
|
|
- using namespace Eigen;
|
|
|
-
|
|
|
isHard.resize(F.rows());
|
|
|
- for(unsigned i=0; i<F.rows(); ++i)
|
|
|
+ for(unsigned i = 0; i < F.rows(); ++i)
|
|
|
isHard[i] = false;
|
|
|
- hard = VectorXd::Zero(F.rows());
|
|
|
-
|
|
|
- wSoft = VectorXd::Zero(F.rows());
|
|
|
- soft = VectorXd::Zero(F.rows());
|
|
|
+ hard = Eigen::VectorXd::Zero(F.rows());
|
|
|
+ wSoft = Eigen::VectorXd::Zero(F.rows());
|
|
|
+ soft = Eigen::VectorXd::Zero(F.rows());
|
|
|
}
|
|
|
|
|
|
Eigen::MatrixXd igl::copyleft::comiso::NRosyField::getFieldPerFace()
|
|
|
{
|
|
|
- using namespace std;
|
|
|
- using namespace Eigen;
|
|
|
-
|
|
|
- MatrixXd result(F.rows(),3);
|
|
|
- for(unsigned i=0; i<F.rows(); ++i)
|
|
|
+ Eigen::MatrixXd result(F.rows(),3);
|
|
|
+ for(unsigned int i = 0; i < F.rows(); ++i)
|
|
|
result.row(i) = convertLocalto3D(i, angles(i));
|
|
|
return result;
|
|
|
}
|
|
|
|
|
|
-Eigen::MatrixXd igl::copyleft::comiso::NRosyField::getFFieldPerFace()
|
|
|
-{
|
|
|
- using namespace std;
|
|
|
- using namespace Eigen;
|
|
|
-
|
|
|
- MatrixXd result(F.rows(),6);
|
|
|
- for(unsigned i=0; i<F.rows(); ++i)
|
|
|
- {
|
|
|
- Vector3d v1 = convertLocalto3D(i, angles(i));
|
|
|
- Vector3d n = N.row(i);
|
|
|
- Vector3d v2 = n.cross(v1);
|
|
|
- v1.normalize();
|
|
|
- v2.normalize();
|
|
|
-
|
|
|
- result.block(i,0,1,3) = v1.transpose();
|
|
|
- result.block(i,3,1,3) = v2.transpose();
|
|
|
- }
|
|
|
- return result;
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
void igl::copyleft::comiso::NRosyField::computek()
|
|
|
{
|
|
|
- using namespace std;
|
|
|
- using namespace Eigen;
|
|
|
-
|
|
|
// For every non-border edge
|
|
|
- for (unsigned eid=0; eid<EF.rows(); ++eid)
|
|
|
+ for (unsigned eid = 0; eid < EF.rows(); ++eid)
|
|
|
{
|
|
|
if (!isBorderEdge[eid])
|
|
|
{
|
|
|
int fid0 = EF(eid,0);
|
|
|
int fid1 = EF(eid,1);
|
|
|
|
|
|
- Vector3d N0 = N.row(fid0);
|
|
|
- Vector3d N1 = N.row(fid1);
|
|
|
+ Eigen::Vector3d N0 = N.row(fid0);
|
|
|
+ Eigen::Vector3d N1 = N.row(fid1);
|
|
|
|
|
|
// find common edge on triangle 0 and 1
|
|
|
int fid0_vc = -1;
|
|
@@ -594,18 +476,18 @@ void igl::copyleft::comiso::NRosyField::computek()
|
|
|
assert(fid0_vc != -1);
|
|
|
assert(fid1_vc != -1);
|
|
|
|
|
|
- Vector3d common_edge = V.row(F(fid0,(fid0_vc+1)%3)) - V.row(F(fid0,fid0_vc));
|
|
|
+ Eigen::Vector3d common_edge = V.row(F(fid0,(fid0_vc+1)%3)) - V.row(F(fid0,fid0_vc));
|
|
|
common_edge.normalize();
|
|
|
|
|
|
// Map the two triangles in a new space where the common edge is the x axis and the N0 the z axis
|
|
|
- MatrixXd P(3,3);
|
|
|
- VectorXd o = V.row(F(fid0,fid0_vc));
|
|
|
- VectorXd tmp = -N0.cross(common_edge);
|
|
|
+ Eigen::MatrixXd P(3,3);
|
|
|
+ Eigen::VectorXd o = V.row(F(fid0,fid0_vc));
|
|
|
+ Eigen::VectorXd tmp = -N0.cross(common_edge);
|
|
|
P << common_edge, tmp, N0;
|
|
|
P.transposeInPlace();
|
|
|
|
|
|
|
|
|
- MatrixXd V0(3,3);
|
|
|
+ Eigen::MatrixXd V0(3,3);
|
|
|
V0.row(0) = V.row(F(fid0,0)).transpose() -o;
|
|
|
V0.row(1) = V.row(F(fid0,1)).transpose() -o;
|
|
|
V0.row(2) = V.row(F(fid0,2)).transpose() -o;
|
|
@@ -616,7 +498,7 @@ void igl::copyleft::comiso::NRosyField::computek()
|
|
|
assert(V0(1,2) < 10e-10);
|
|
|
assert(V0(2,2) < 10e-10);
|
|
|
|
|
|
- MatrixXd V1(3,3);
|
|
|
+ Eigen::MatrixXd V1(3,3);
|
|
|
V1.row(0) = V.row(F(fid1,0)).transpose() -o;
|
|
|
V1.row(1) = V.row(F(fid1,1)).transpose() -o;
|
|
|
V1.row(2) = V.row(F(fid1,2)).transpose() -o;
|
|
@@ -627,12 +509,12 @@ void igl::copyleft::comiso::NRosyField::computek()
|
|
|
|
|
|
// compute rotation R such that R * N1 = N0
|
|
|
// i.e. map both triangles to the same plane
|
|
|
- double alpha = -atan2(V1((fid1_vc+2)%3,2),V1((fid1_vc+2)%3,1));
|
|
|
+ double alpha = -std::atan2(V1((fid1_vc + 2) % 3, 2), V1((fid1_vc + 2) % 3, 1));
|
|
|
|
|
|
- MatrixXd R(3,3);
|
|
|
+ Eigen::MatrixXd R(3,3);
|
|
|
R << 1, 0, 0,
|
|
|
- 0, cos(alpha), -sin(alpha) ,
|
|
|
- 0, sin(alpha), cos(alpha);
|
|
|
+ 0, std::cos(alpha), -std::sin(alpha) ,
|
|
|
+ 0, std::sin(alpha), std::cos(alpha);
|
|
|
V1 = (R*V1.transpose()).transpose();
|
|
|
|
|
|
assert(V1(0,2) < 10e-10);
|
|
@@ -641,17 +523,17 @@ void igl::copyleft::comiso::NRosyField::computek()
|
|
|
|
|
|
// measure the angle between the reference frames
|
|
|
// k_ij is the angle between the triangle on the left and the one on the right
|
|
|
- VectorXd ref0 = V0.row(1) - V0.row(0);
|
|
|
- VectorXd ref1 = V1.row(1) - V1.row(0);
|
|
|
+ Eigen::VectorXd ref0 = V0.row(1) - V0.row(0);
|
|
|
+ Eigen::VectorXd ref1 = V1.row(1) - V1.row(0);
|
|
|
|
|
|
ref0.normalize();
|
|
|
ref1.normalize();
|
|
|
|
|
|
- double ktemp = atan2(ref1(1),ref1(0)) - atan2(ref0(1),ref0(0));
|
|
|
+ double ktemp = std::atan2(ref1(1), ref1(0)) - std::atan2(ref0(1), ref0(0));
|
|
|
|
|
|
// just to be sure, rotate ref0 using angle ktemp...
|
|
|
- MatrixXd R2(2,2);
|
|
|
- R2 << cos(ktemp), -sin(ktemp), sin(ktemp), cos(ktemp);
|
|
|
+ Eigen::MatrixXd R2(2,2);
|
|
|
+ R2 << std::cos(ktemp), -std::sin(ktemp), std::sin(ktemp), std::cos(ktemp);
|
|
|
|
|
|
tmp = R2*ref0.head<2>();
|
|
|
|
|
@@ -666,25 +548,15 @@ void igl::copyleft::comiso::NRosyField::computek()
|
|
|
|
|
|
void igl::copyleft::comiso::NRosyField::reduceSpace()
|
|
|
{
|
|
|
- using namespace std;
|
|
|
- using namespace Eigen;
|
|
|
-
|
|
|
// All variables are free in the beginning
|
|
|
- for(unsigned i=0; i<EV.rows(); ++i)
|
|
|
+ for(unsigned int i = 0; i < EV.rows(); ++i)
|
|
|
pFixed[i] = false;
|
|
|
|
|
|
- vector<VectorXd> debug;
|
|
|
-
|
|
|
- vector<bool> visited(EV.rows());
|
|
|
- for(unsigned i=0; i<EV.rows(); ++i)
|
|
|
- visited[i] = false;
|
|
|
-
|
|
|
- vector<bool> starting(EV.rows());
|
|
|
- for(unsigned i=0; i<EV.rows(); ++i)
|
|
|
- starting[i] = false;
|
|
|
+ std::vector<bool> visited(EV.rows(), false);
|
|
|
+ std::vector<bool> starting(EV.rows(), false);
|
|
|
|
|
|
- queue<int> q;
|
|
|
- for(unsigned i=0; i<F.rows(); ++i)
|
|
|
+ std::queue<int> q;
|
|
|
+ for(unsigned int i = 0; i < F.rows(); ++i)
|
|
|
if (isHard[i] || wSoft[i] != 0)
|
|
|
{
|
|
|
q.push(i);
|
|
@@ -714,7 +586,6 @@ void igl::copyleft::comiso::NRosyField::reduceSpace()
|
|
|
p[eid] = 0;
|
|
|
visited[fid] = true;
|
|
|
q.push(fid);
|
|
|
-
|
|
|
}
|
|
|
}
|
|
|
else
|
|
@@ -724,15 +595,14 @@ void igl::copyleft::comiso::NRosyField::reduceSpace()
|
|
|
p[eid] = 0;
|
|
|
}
|
|
|
}
|
|
|
-
|
|
|
}
|
|
|
|
|
|
// Force matchings between fixed faces
|
|
|
- for(unsigned i=0; i<F.rows();++i)
|
|
|
+ for(unsigned int i = 0; i < F.rows();++i)
|
|
|
{
|
|
|
if (isHard[i])
|
|
|
{
|
|
|
- for(unsigned int j=0; j<3; ++j)
|
|
|
+ for(unsigned int j = 0; j < 3; ++j)
|
|
|
{
|
|
|
int fid = TT(i,j);
|
|
|
if ((fid!=-1) && (isHard[fid]))
|
|
@@ -743,7 +613,7 @@ void igl::copyleft::comiso::NRosyField::reduceSpace()
|
|
|
int fid1 = EF(eid,1);
|
|
|
|
|
|
pFixed[eid] = true;
|
|
|
- p[eid] = roundl(2.0/igl::PI*(hard(fid1) - hard(fid0) - k(eid)));
|
|
|
+ p[eid] = (int)std::round(2.0 / igl::PI * (hard(fid1) - hard(fid0) - k(eid)));
|
|
|
}
|
|
|
}
|
|
|
}
|
|
@@ -752,22 +622,16 @@ void igl::copyleft::comiso::NRosyField::reduceSpace()
|
|
|
|
|
|
double igl::copyleft::comiso::NRosyField::convert3DtoLocal(unsigned fid, const Eigen::Vector3d& v)
|
|
|
{
|
|
|
- using namespace std;
|
|
|
- using namespace Eigen;
|
|
|
-
|
|
|
// Project onto the tangent plane
|
|
|
- Vector2d vp = TPs[fid] * v;
|
|
|
+ Eigen::Vector2d vp = TPs[fid] * v;
|
|
|
|
|
|
// Convert to angle
|
|
|
- return atan2(vp(1),vp(0));
|
|
|
+ return std::atan2(vp(1), vp(0));
|
|
|
}
|
|
|
|
|
|
Eigen::Vector3d igl::copyleft::comiso::NRosyField::convertLocalto3D(unsigned fid, double a)
|
|
|
{
|
|
|
- using namespace std;
|
|
|
- using namespace Eigen;
|
|
|
-
|
|
|
- Vector2d vp(cos(a),sin(a));
|
|
|
+ Eigen::Vector2d vp(std::cos(a), std::sin(a));
|
|
|
return vp.transpose() * TPs[fid];
|
|
|
}
|
|
|
|
|
@@ -775,23 +639,18 @@ Eigen::VectorXd igl::copyleft::comiso::NRosyField::angleDefect()
|
|
|
{
|
|
|
Eigen::VectorXd A = Eigen::VectorXd::Constant(V.rows(),-2*igl::PI);
|
|
|
|
|
|
- for (unsigned i=0; i < F.rows(); ++i)
|
|
|
+ for (unsigned int i = 0; i < F.rows(); ++i)
|
|
|
{
|
|
|
for (int j = 0; j < 3; ++j)
|
|
|
{
|
|
|
Eigen::VectorXd a = V.row(F(i,(j+1)%3)) - V.row(F(i,j));
|
|
|
Eigen::VectorXd b = V.row(F(i,(j+2)%3)) - V.row(F(i,j));
|
|
|
double t = a.transpose() * b;
|
|
|
- double norm_prod = a.norm() * b.norm();
|
|
|
- if (norm_prod > 0.)
|
|
|
- t /= norm_prod;
|
|
|
+ if(a.norm() > 0. && b.norm() > 0.)
|
|
|
+ t /= (a.norm() * b.norm());
|
|
|
else
|
|
|
- throw std::runtime_error("Error in 'igl::copyleft::comiso::NRosyField::angleDefect': division by zero!");
|
|
|
- if (t > 1.)
|
|
|
- t = 1.;
|
|
|
- else if (t < -1.)
|
|
|
- t = -1.;
|
|
|
- A(F(i,j)) += acos(t);
|
|
|
+ throw std::runtime_error("igl::copyleft::comiso::NRosyField::angleDefect: Division by zero!");
|
|
|
+ A(F(i, j)) += std::acos(std::max(std::min(t, 1.), -1.));
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -802,57 +661,46 @@ void igl::copyleft::comiso::NRosyField::findCones(int N)
|
|
|
{
|
|
|
// Compute I0, see http://www.graphics.rwth-aachen.de/media/papers/bommes_zimmer_2009_siggraph_011.pdf for details
|
|
|
|
|
|
- Eigen::VectorXd I0 = Eigen::VectorXd::Zero(V.rows());
|
|
|
+ singularityIndex = Eigen::VectorXd::Zero(V.rows());
|
|
|
|
|
|
// first the k
|
|
|
- for (unsigned i=0; i < EV.rows(); ++i)
|
|
|
+ for (unsigned i = 0; i < EV.rows(); ++i)
|
|
|
{
|
|
|
if (!isBorderEdge[i])
|
|
|
{
|
|
|
- I0(EV(i,0)) -= k(i);
|
|
|
- I0(EV(i,1)) += k(i);
|
|
|
+ singularityIndex(EV(i, 0)) -= k(i);
|
|
|
+ singularityIndex(EV(i, 1)) += k(i);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// then the A
|
|
|
Eigen::VectorXd A = angleDefect();
|
|
|
-
|
|
|
- I0 = I0 + A;
|
|
|
-
|
|
|
+ singularityIndex += A;
|
|
|
// normalize
|
|
|
- I0 = I0 / (2*igl::PI);
|
|
|
+ singularityIndex /= (2 * igl::PI);
|
|
|
|
|
|
// round to integer (remove numerical noise)
|
|
|
- for (unsigned i=0; i < I0.size(); ++i)
|
|
|
- I0(i) = round(I0(i));
|
|
|
+ for (unsigned i = 0; i < singularityIndex.size(); ++i)
|
|
|
+ singularityIndex(i) = round(singularityIndex(i));
|
|
|
|
|
|
- // compute I
|
|
|
- Eigen::VectorXd I = I0;
|
|
|
-
|
|
|
- for (unsigned i=0; i < EV.rows(); ++i)
|
|
|
+ for (unsigned i = 0; i < EV.rows(); ++i)
|
|
|
{
|
|
|
if (!isBorderEdge[i])
|
|
|
{
|
|
|
- I(EV(i,0)) -= double(p(i))/double(N);
|
|
|
- I(EV(i,1)) += double(p(i))/double(N);
|
|
|
+ singularityIndex(EV(i, 0)) -= double(p(i)) / double(N);
|
|
|
+ singularityIndex(EV(i, 1)) += double(p(i)) / double(N);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// Clear the vertices on the edges
|
|
|
- for (unsigned i=0; i < EV.rows(); ++i)
|
|
|
+ for (unsigned i = 0; i < EV.rows(); ++i)
|
|
|
{
|
|
|
if (isBorderEdge[i])
|
|
|
{
|
|
|
- I0(EV(i,0)) = 0;
|
|
|
- I0(EV(i,1)) = 0;
|
|
|
- I(EV(i,0)) = 0;
|
|
|
- I(EV(i,1)) = 0;
|
|
|
- A(EV(i,0)) = 0;
|
|
|
- A(EV(i,1)) = 0;
|
|
|
+ singularityIndex(EV(i,0)) = 0;
|
|
|
+ singularityIndex(EV(i,1)) = 0;
|
|
|
}
|
|
|
}
|
|
|
-
|
|
|
- singularityIndex = I;
|
|
|
}
|
|
|
|
|
|
Eigen::VectorXd igl::copyleft::comiso::NRosyField::getSingularityIndexPerVertex()
|
|
@@ -875,15 +723,15 @@ IGL_INLINE void igl::copyleft::comiso::nrosy(
|
|
|
)
|
|
|
{
|
|
|
// Init solver
|
|
|
- igl::copyleft::comiso::NRosyField solver(V,F);
|
|
|
+ igl::copyleft::comiso::NRosyField solver(V, F);
|
|
|
|
|
|
// Add hard constraints
|
|
|
- for (unsigned i=0; i<b.size();++i)
|
|
|
- solver.setConstraintHard(b(i),bc.row(i));
|
|
|
+ for (unsigned i = 0; i < b.size(); ++i)
|
|
|
+ solver.setConstraintHard(b(i), bc.row(i));
|
|
|
|
|
|
// Add soft constraints
|
|
|
- for (unsigned i=0; i<b_soft.size();++i)
|
|
|
- solver.setConstraintSoft(b_soft(i),w_soft(i),bc_soft.row(i));
|
|
|
+ for (unsigned i = 0; i < b_soft.size(); ++i)
|
|
|
+ solver.setConstraintSoft(b_soft(i), w_soft(i), bc_soft.row(i));
|
|
|
|
|
|
// Set the soft constraints global weight
|
|
|
solver.setSoftAlpha(soft);
|
|
@@ -910,11 +758,11 @@ IGL_INLINE void igl::copyleft::comiso::nrosy(
|
|
|
)
|
|
|
{
|
|
|
// Init solver
|
|
|
- igl::copyleft::comiso::NRosyField solver(V,F);
|
|
|
+ igl::copyleft::comiso::NRosyField solver(V, F);
|
|
|
|
|
|
// Add hard constraints
|
|
|
- for (unsigned i=0; i<b.size();++i)
|
|
|
- solver.setConstraintHard(b(i),bc.row(i));
|
|
|
+ for (unsigned i= 0; i < b.size(); ++i)
|
|
|
+ solver.setConstraintHard(b(i), bc.row(i));
|
|
|
|
|
|
// Interpolate
|
|
|
solver.solve(N);
|