|
@@ -74,6 +74,12 @@ py::class_<Type> bind_eigen_2(py::module &m, const char *name,
|
|
|
|
|
|
.def("mean", [](const Type &m) {return m.mean();})
|
|
|
|
|
|
+ .def("sum", [](const Type &m) {return m.sum();})
|
|
|
+ .def("prod", [](const Type &m) {return m.prod();})
|
|
|
+ .def("trace", [](const Type &m) {return m.trace();})
|
|
|
+ .def("norm", [](const Type &m) {return m.norm();})
|
|
|
+ .def("squaredNorm", [](const Type &m) {return m.squaredNorm();})
|
|
|
+
|
|
|
/* Component-wise operations */
|
|
|
.def("cwiseAbs", &Type::cwiseAbs)
|
|
|
.def("cwiseAbs2", &Type::cwiseAbs2)
|
|
@@ -91,6 +97,7 @@ py::class_<Type> bind_eigen_2(py::module &m, const char *name,
|
|
|
.def("rowwiseProd", [](const Type &m) {return Type(m.rowwise().prod());} )
|
|
|
.def("rowwiseMean", [](const Type &m) {return Type(m.rowwise().mean());} )
|
|
|
.def("rowwiseNorm", [](const Type &m) {return Type(m.rowwise().norm());} )
|
|
|
+ .def("rowwiseNormalized", [](const Type &m) {return Type(m.rowwise().normalized());} )
|
|
|
.def("rowwiseMinCoeff", [](const Type &m) {return Type(m.rowwise().minCoeff());} )
|
|
|
.def("rowwiseMaxCoeff", [](const Type &m) {return Type(m.rowwise().maxCoeff());} )
|
|
|
|
|
@@ -101,6 +108,9 @@ py::class_<Type> bind_eigen_2(py::module &m, const char *name,
|
|
|
.def("colwiseMinCoeff", [](const Type &m) {return Type(m.colwise().minCoeff());} )
|
|
|
.def("colwiseMaxCoeff", [](const Type &m) {return Type(m.colwise().maxCoeff());} )
|
|
|
|
|
|
+ .def("replicate", [](const Type &m, const int& r, const int& c) {return Type(m.replicate(r,c));} )
|
|
|
+ .def("asDiagonal", [](const Type &m) {return Eigen::DiagonalMatrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>(m.asDiagonal());} )
|
|
|
+
|
|
|
/* Arithmetic operators (def_cast forcefully casts the result back to a
|
|
|
Type to avoid type issues with Eigen's crazy expression templates) */
|
|
|
.def_cast(-py::self)
|
|
@@ -258,9 +268,11 @@ py::class_<Type> bind_eigen_sparse_2(py::module &m, const char *name,
|
|
|
.def("rows", [](const Type &m) { return m.rows(); })
|
|
|
|
|
|
/* Initialization */
|
|
|
- // .def("setZero", [](Type &m) { m.setZero(); })
|
|
|
- // .def("setIdentity", [](Type &m) { m.setIdentity(); })
|
|
|
- // .def("setConstant", [](Type &m, Scalar value) { m.setConstant(value); })
|
|
|
+ .def("setZero", [](Type &m) { m.setZero(); })
|
|
|
+ .def("setIdentity", [](Type &m) { m.setIdentity(); })
|
|
|
+
|
|
|
+ .def("transpose", [](Type &m) { return Type(m.transpose()); })
|
|
|
+ .def("norm", [](Type &m) { return m.norm(); })
|
|
|
|
|
|
/* Resizing */
|
|
|
// .def("resize", [](Type &m, size_t s0, size_t s1) { m.resize(s0, s1); })
|
|
@@ -286,7 +298,19 @@ py::class_<Type> bind_eigen_sparse_2(py::module &m, const char *name,
|
|
|
.def_cast(py::self - py::self)
|
|
|
.def_cast(py::self * py::self)
|
|
|
.def_cast(py::self * Scalar())
|
|
|
+ .def_cast(Scalar() * py::self)
|
|
|
// Special case, sparse * dense produces a dense matrix
|
|
|
+
|
|
|
+ // .def("__mul__", []
|
|
|
+ // (const Type &a, const Scalar& b)
|
|
|
+ // {
|
|
|
+ // return Type(a * b);
|
|
|
+ // })
|
|
|
+ // .def("__rmul__", [](const Type& a, const Scalar& b)
|
|
|
+ // {
|
|
|
+ // return Type(b * a);
|
|
|
+ // })
|
|
|
+
|
|
|
.def("__mul__", []
|
|
|
(const Type &a, const Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>& b)
|
|
|
{
|
|
@@ -297,6 +321,16 @@ py::class_<Type> bind_eigen_sparse_2(py::module &m, const char *name,
|
|
|
return Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>(b * a);
|
|
|
})
|
|
|
|
|
|
+ .def("__mul__", []
|
|
|
+ (const Type &a, const Eigen::DiagonalMatrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>& b)
|
|
|
+ {
|
|
|
+ return Type(a * b);
|
|
|
+ })
|
|
|
+ .def("__rmul__", [](const Type& a, const Eigen::DiagonalMatrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>& b)
|
|
|
+ {
|
|
|
+ return Type(b * a);
|
|
|
+ })
|
|
|
+
|
|
|
//.def(py::self * Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>())
|
|
|
// .def_cast(py::self / Scalar())
|
|
|
|
|
@@ -384,6 +418,82 @@ py::class_<Type> bind_eigen_sparse_2(py::module &m, const char *name,
|
|
|
return matrix;
|
|
|
}
|
|
|
|
|
|
+/// Creates Python bindings for a diagonal Eigen sparse order-2 tensor (i.e. a matrix)
|
|
|
+template <typename Type>
|
|
|
+py::class_<Type> bind_eigen_diagonal_2(py::module &m, const char *name,
|
|
|
+ py::object parent = py::object()) {
|
|
|
+ typedef typename Type::Scalar Scalar;
|
|
|
+
|
|
|
+ /* Many Eigen functions are templated and can't easily be referenced using
|
|
|
+ a function pointer, thus a big portion of the binding code below
|
|
|
+ instantiates Eigen code using small anonymous wrapper functions */
|
|
|
+ py::class_<Type> matrix(m, name, parent);
|
|
|
+
|
|
|
+ matrix
|
|
|
+ /* Constructors */
|
|
|
+ .def(py::init<>())
|
|
|
+ //.def(py::init<size_t, size_t>())
|
|
|
+
|
|
|
+ /* Size query functions */
|
|
|
+ .def("size", [](const Type &m) { return m.size(); })
|
|
|
+ .def("cols", [](const Type &m) { return m.cols(); })
|
|
|
+ .def("rows", [](const Type &m) { return m.rows(); })
|
|
|
+
|
|
|
+ /* Initialization */
|
|
|
+ .def("setZero", [](Type &m) { m.setZero(); })
|
|
|
+ .def("setIdentity", [](Type &m) { m.setIdentity(); })
|
|
|
+
|
|
|
+ /* Arithmetic operators (def_cast forcefully casts the result back to a
|
|
|
+ Type to avoid type issues with Eigen's crazy expression templates) */
|
|
|
+ // .def_cast(-py::self)
|
|
|
+ // .def_cast(py::self + py::self)
|
|
|
+ // .def_cast(py::self - py::self)
|
|
|
+ // .def_cast(py::self * py::self)
|
|
|
+ .def_cast(py::self * Scalar())
|
|
|
+ .def_cast(Scalar() * py::self)
|
|
|
+
|
|
|
+ // // Special case, sparse * dense produces a dense matrix
|
|
|
+ // .def("__mul__", []
|
|
|
+ // (const Type &a, const Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>& b)
|
|
|
+ // {
|
|
|
+ // return Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>(a * b);
|
|
|
+ // })
|
|
|
+ // .def("__rmul__", [](const Type& a, const Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>& b)
|
|
|
+ // {
|
|
|
+ // return Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>(b * a);
|
|
|
+ // })
|
|
|
+
|
|
|
+ .def("__mul__", []
|
|
|
+ (const Type &a, const Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>& b)
|
|
|
+ {
|
|
|
+ return Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>(a * b);
|
|
|
+ })
|
|
|
+ .def("__rmul__", [](const Type& a, const Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>& b)
|
|
|
+ {
|
|
|
+ return Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic>(b * a);
|
|
|
+ })
|
|
|
+
|
|
|
+ .def("__mul__", []
|
|
|
+ (const Type &a, const Eigen::SparseMatrix<Scalar>& b)
|
|
|
+ {
|
|
|
+ return Eigen::SparseMatrix<Scalar>(a * b);
|
|
|
+ })
|
|
|
+ .def("__rmul__", [](const Type& a, const Eigen::SparseMatrix<Scalar>& b)
|
|
|
+ {
|
|
|
+ return Eigen::SparseMatrix<Scalar>(b * a);
|
|
|
+ })
|
|
|
+
|
|
|
+ /* Python protocol implementations */
|
|
|
+ .def("__repr__", [](const Type &/*v*/) {
|
|
|
+ std::ostringstream oss;
|
|
|
+ oss << "Eigen is not able to plot Diagonal Matrices";
|
|
|
+ return oss.str();
|
|
|
+ })
|
|
|
+
|
|
|
+ ;
|
|
|
+ return matrix;
|
|
|
+}
|
|
|
+
|
|
|
|
|
|
void python_export_vector(py::module &m) {
|
|
|
|
|
@@ -440,7 +550,29 @@ void python_export_vector(py::module &m) {
|
|
|
/* Bindings for SparseMatrix<int> */
|
|
|
bind_eigen_sparse_2< Eigen::SparseMatrix<int> > (me, "SparseMatrixi");
|
|
|
|
|
|
+ /* Bindings for DiagonalMatrix<double> */
|
|
|
+ bind_eigen_diagonal_2< Eigen::DiagonalMatrix<double,Eigen::Dynamic,Eigen::Dynamic> > (me, "DiagonalMatrixd");
|
|
|
+
|
|
|
+ /* Bindings for DiagonalMatrix<int> */
|
|
|
+ bind_eigen_diagonal_2< Eigen::DiagonalMatrix<int,Eigen::Dynamic,Eigen::Dynamic> > (me, "DiagonalMatrixi");
|
|
|
+
|
|
|
+ /* Bindings for SimplicialLLT*/
|
|
|
+
|
|
|
+ py::class_<Eigen::SimplicialLLT<Eigen::SparseMatrix<double > >> simpliciallltsparse(me, "SimplicialLLTsparse");
|
|
|
+
|
|
|
+ simpliciallltsparse
|
|
|
+ .def(py::init<>())
|
|
|
+ .def(py::init<Eigen::SparseMatrix<double>>())
|
|
|
+ .def("info",[](const Eigen::SimplicialLLT<Eigen::SparseMatrix<double > >& s)
|
|
|
+ {
|
|
|
+ if (s.info() == Eigen::Success)
|
|
|
+ return "Success";
|
|
|
+ else
|
|
|
+ return "Numerical Issue";
|
|
|
+ })
|
|
|
+ .def("solve",[](const Eigen::SimplicialLLT<Eigen::SparseMatrix<double > >& s, const Eigen::MatrixXd& rhs) { return Eigen::MatrixXd(s.solve(rhs)); })
|
|
|
|
|
|
+ ;
|
|
|
|
|
|
|
|
|
|