|
@@ -12,14 +12,14 @@
|
|
|
|
|
|
IGL_INLINE void igl::edge_flaps(
|
|
|
const Eigen::MatrixXi & F,
|
|
|
- const Eigen::MatrixXi & E,
|
|
|
+ const Eigen::MatrixXi & uE,
|
|
|
const Eigen::VectorXi & EMAP,
|
|
|
Eigen::MatrixXi & EF,
|
|
|
Eigen::MatrixXi & EI)
|
|
|
{
|
|
|
// Initialize to boundary value
|
|
|
- EF.setConstant(E.rows(),2,-1);
|
|
|
- EI.setConstant(E.rows(),2,-1);
|
|
|
+ EF.setConstant(uE.rows(),2,-1);
|
|
|
+ EI.setConstant(uE.rows(),2,-1);
|
|
|
// loop over all faces
|
|
|
for(int f = 0;f<F.rows();f++)
|
|
|
{
|
|
@@ -29,13 +29,13 @@ IGL_INLINE void igl::edge_flaps(
|
|
|
// get edge id
|
|
|
const int e = EMAP(v*F.rows()+f);
|
|
|
// See if this is left or right flap w.r.t. edge orientation
|
|
|
- if( F(f,(v+1)%3) == E(e,0) && F(f,(v+2)%3) == E(e,1))
|
|
|
+ if( F(f,(v+1)%3) == uE(e,0) && F(f,(v+2)%3) == uE(e,1))
|
|
|
{
|
|
|
EF(e,0) = f;
|
|
|
EI(e,0) = v;
|
|
|
}else
|
|
|
{
|
|
|
- assert(F(f,(v+1)%3) == E(e,1) && F(f,(v+2)%3) == E(e,0));
|
|
|
+ assert(F(f,(v+1)%3) == uE(e,1) && F(f,(v+2)%3) == uE(e,0));
|
|
|
EF(e,1) = f;
|
|
|
EI(e,1) = v;
|
|
|
}
|
|
@@ -45,16 +45,16 @@ IGL_INLINE void igl::edge_flaps(
|
|
|
|
|
|
IGL_INLINE void igl::edge_flaps(
|
|
|
const Eigen::MatrixXi & F,
|
|
|
- Eigen::MatrixXi & E,
|
|
|
+ Eigen::MatrixXi & uE,
|
|
|
Eigen::VectorXi & EMAP,
|
|
|
Eigen::MatrixXi & EF,
|
|
|
Eigen::MatrixXi & EI)
|
|
|
{
|
|
|
Eigen::MatrixXi allE;
|
|
|
std::vector<std::vector<int> > uE2E;
|
|
|
- igl::unique_edge_map(F,allE,E,EMAP,uE2E);
|
|
|
+ igl::unique_edge_map(F,allE,uE,EMAP,uE2E);
|
|
|
// Const-ify to call overload
|
|
|
- const auto & cE = E;
|
|
|
+ const auto & cuE = uE;
|
|
|
const auto & cEMAP = EMAP;
|
|
|
- return edge_flaps(F,cE,cEMAP,EF,EI);
|
|
|
+ return edge_flaps(F,cuE,cEMAP,EF,EI);
|
|
|
}
|