|
@@ -1,9 +1,10 @@
|
|
|
#include "outer_hull.h"
|
|
|
#include "outer_facet.h"
|
|
|
#include "facet_components.h"
|
|
|
-
|
|
|
+#include "winding_number.h"
|
|
|
#include "triangle_triangle_adjacency.h"
|
|
|
#include "unique_edge_map.h"
|
|
|
+#include "barycenter.h"
|
|
|
#include "per_face_normals.h"
|
|
|
#include "all_edges.h"
|
|
|
#include "colon.h"
|
|
@@ -33,10 +34,10 @@ IGL_INLINE void igl::outer_hull(
|
|
|
using namespace igl;
|
|
|
typedef typename DerivedF::Index Index;
|
|
|
Matrix<Index,DerivedF::RowsAtCompileTime,1> C;
|
|
|
+ typedef Matrix<typename DerivedV::Scalar,Dynamic,DerivedV::ColsAtCompileTime> MatrixXV;
|
|
|
typedef Matrix<typename DerivedF::Scalar,Dynamic,DerivedF::ColsAtCompileTime> MatrixXF;
|
|
|
typedef Matrix<typename DerivedG::Scalar,Dynamic,DerivedG::ColsAtCompileTime> MatrixXG;
|
|
|
typedef Matrix<typename DerivedJ::Scalar,Dynamic,DerivedJ::ColsAtCompileTime> MatrixXJ;
|
|
|
- typedef Matrix<typename Derivedflip::Scalar,Dynamic,Derivedflip::ColsAtCompileTime> MatrixXflip;
|
|
|
const Index m = F.rows();
|
|
|
|
|
|
typedef Matrix<typename DerivedF::Scalar,Dynamic,2> MatrixX2I;
|
|
@@ -48,8 +49,10 @@ IGL_INLINE void igl::outer_hull(
|
|
|
|
|
|
vector<vector<vector<Index > > > TT,_1;
|
|
|
triangle_triangle_adjacency(E,EMAP,uE2E,false,TT,_1);
|
|
|
- facet_components(TT,C);
|
|
|
- const Index ncc = C.maxCoeff()+1;
|
|
|
+ VectorXI counts;
|
|
|
+ facet_components(TT,C,counts);
|
|
|
+ assert(C.maxCoeff()+1 == counts.rows());
|
|
|
+ const size_t ncc = counts.rows();
|
|
|
G.resize(0,F.cols());
|
|
|
J.resize(0,1);
|
|
|
flip.setConstant(m,1,false);
|
|
@@ -64,162 +67,229 @@ IGL_INLINE void igl::outer_hull(
|
|
|
vector<bool> EH(3*m,false);
|
|
|
vector<MatrixXG> vG(ncc);
|
|
|
vector<MatrixXJ> vJ(ncc);
|
|
|
+ vector<MatrixXJ> vIM(ncc);
|
|
|
+ for(size_t id = 0;id<ncc;id++)
|
|
|
+ {
|
|
|
+ vIM[id].resize(counts[id],1);
|
|
|
+ }
|
|
|
+ // current index into each IM
|
|
|
+ vector<size_t> g(ncc,0);
|
|
|
+ // place order of each face in its respective component
|
|
|
+ for(Index f = 0;f<m;f++)
|
|
|
+ {
|
|
|
+ vIM[C(f)](g[C(f)]++) = f;
|
|
|
+ }
|
|
|
|
|
|
- // Total size of G (and J)
|
|
|
- size_t nG = 0;
|
|
|
- // This is O( (n+m) * nnc) !
|
|
|
- for(Index id = 0;id<ncc;id++)
|
|
|
+ // assumes that "resolve" has handled any coplanar cases correctly and nearly
|
|
|
+ // coplanar cases can be sorted based on barycenter.
|
|
|
+ MatrixXV BC;
|
|
|
+ barycenter(V,F,BC);
|
|
|
+
|
|
|
+ for(Index id = 0;id<(Index)ncc;id++)
|
|
|
{
|
|
|
- // Determine number of facets in component id
|
|
|
- Index num_id = 0;
|
|
|
- for(Index f = 0;f<m;f++)
|
|
|
+ auto & IM = vIM[id];
|
|
|
+ // starting face that's guaranteed to be on the outer hull and in this
|
|
|
+ // component
|
|
|
+ int f;
|
|
|
+ bool f_flip;
|
|
|
+ outer_facet(V,F,N,IM,f,f_flip);
|
|
|
+ int FHcount = 0;
|
|
|
+ // Q contains list of face edges to continue traversing upong
|
|
|
+ queue<int> Q;
|
|
|
+ Q.push(f+0*m);
|
|
|
+ Q.push(f+1*m);
|
|
|
+ Q.push(f+2*m);
|
|
|
+ flip[f] = f_flip;
|
|
|
+ while(!Q.empty())
|
|
|
{
|
|
|
- if(C(f) == id)
|
|
|
+ // face-edge
|
|
|
+ const int e = Q.front();
|
|
|
+ Q.pop();
|
|
|
+ // face
|
|
|
+ const int f = e%m;
|
|
|
+ // corner
|
|
|
+ const int c = e/m;
|
|
|
+ // Should never see edge again...
|
|
|
+ if(EH[e] == true)
|
|
|
{
|
|
|
- num_id++;
|
|
|
+ continue;
|
|
|
}
|
|
|
- }
|
|
|
- //MatrixXF Fc(num_id,F.cols());
|
|
|
- MatrixXJ IM(num_id,1);
|
|
|
- if(C.maxCoeff() == 0)
|
|
|
- {
|
|
|
- assert(num_id == F.rows());
|
|
|
- //Fc = F;
|
|
|
- IM = MatrixXJ::LinSpaced(F.rows(),0,F.rows()-1);
|
|
|
- }else
|
|
|
- {
|
|
|
- int g = 0;
|
|
|
- for(Index f = 0;f<m;f++)
|
|
|
+ EH[e] = true;
|
|
|
+ // first time seeing face
|
|
|
+ if(!FH[f])
|
|
|
{
|
|
|
- if(C(f) == id)
|
|
|
- {
|
|
|
- //Fc.row(g) = F.row(f);
|
|
|
- IM(g) = f;
|
|
|
- g++;
|
|
|
- }
|
|
|
+ FH[f] = true;
|
|
|
+ FHcount++;
|
|
|
}
|
|
|
- }
|
|
|
- {
|
|
|
- // starting face that's guaranteed to be on the outer hull and in this
|
|
|
- // component
|
|
|
- int f;
|
|
|
- bool f_flip;
|
|
|
- outer_facet(V,F,N,IM,f,f_flip);
|
|
|
- // Q contains list of face edges to continue traversing upong
|
|
|
- queue<int> Q;
|
|
|
- Q.push(f+0*m);
|
|
|
- Q.push(f+1*m);
|
|
|
- Q.push(f+2*m);
|
|
|
- flip[f] = f_flip;
|
|
|
- int FHcount = 0;
|
|
|
- while(!Q.empty())
|
|
|
+ // find overlapping face-edges
|
|
|
+ const auto & neighbors = uE2E[EMAP(e)];
|
|
|
+ const auto & fN = (flip[f]?-1.:1.)*N.row(f);
|
|
|
+ // source of edge according to f
|
|
|
+ const int fs = flip[f]?F(f,(c+2)%3):F(f,(c+1)%3);
|
|
|
+ // destination of edge according to f
|
|
|
+ const int fd = flip[f]?F(f,(c+1)%3):F(f,(c+2)%3);
|
|
|
+ const auto & eV = (V.row(fd)-V.row(fs)).normalized();
|
|
|
+ // Loop over and find max dihedral angle
|
|
|
+ typename DerivedV::Scalar max_di = -1;
|
|
|
+ int max_ne = -1;
|
|
|
+ typename Eigen::Matrix< typename DerivedV::Scalar, 1, 3> max_nN;
|
|
|
+ for(const auto & ne : neighbors)
|
|
|
{
|
|
|
- // face-edge
|
|
|
- const int e = Q.front();
|
|
|
- Q.pop();
|
|
|
- // face
|
|
|
- const int f = e%m;
|
|
|
- // corner
|
|
|
- const int c = e/m;
|
|
|
- // Should never see edge again...
|
|
|
- if(EH[e] == true)
|
|
|
+ const int nf = ne%m;
|
|
|
+ if(nf == f)
|
|
|
{
|
|
|
continue;
|
|
|
}
|
|
|
- EH[e] = true;
|
|
|
- // first time seeing face
|
|
|
- if(!FH[f])
|
|
|
+ const int nc = ne/m;
|
|
|
+ // are faces consistently oriented
|
|
|
+ //const int ns = F(nf,(nc+1)%3);
|
|
|
+ const int nd = F(nf,(nc+2)%3);
|
|
|
+ const bool cons = (flip[f]?fd:fs) == nd;
|
|
|
+ const auto & nN = (cons? (flip[f]?-1:1.) : (flip[f]?1.:-1.) )*N.row(nf);
|
|
|
+ const auto & ndi = M_PI - atan2( fN.cross(nN).dot(eV), fN.dot(nN));
|
|
|
+ if(ndi>=max_di)
|
|
|
+ {
|
|
|
+ max_ne = ne;
|
|
|
+ max_di = ndi;
|
|
|
+ max_nN = nN;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ if(max_ne>=0)
|
|
|
+ {
|
|
|
+ const int nf = max_ne%m;
|
|
|
+ const int nc = max_ne/m;
|
|
|
+ const int nd = F(nf,(nc+2)%3);
|
|
|
+ const bool cons = (flip[f]?fd:fs) == nd;
|
|
|
+ flip[nf] = (cons ? flip[f] : !flip[f]);
|
|
|
+ const int ne1 = nf+((nc+1)%3)*m;
|
|
|
+ const int ne2 = nf+((nc+2)%3)*m;
|
|
|
+ if(!EH[ne1])
|
|
|
{
|
|
|
- FH[f] = true;
|
|
|
- FHcount++;
|
|
|
+ Q.push(ne1);
|
|
|
}
|
|
|
- // find overlapping face-edges
|
|
|
- const auto & neighbors = uE2E[EMAP(e)];
|
|
|
- const auto & fN = (flip[f]?-1.:1.)*N.row(f);
|
|
|
- // source of edge according to f
|
|
|
- const int fs = flip[f]?F(f,(c+2)%3):F(f,(c+1)%3);
|
|
|
- // destination of edge according to f
|
|
|
- const int fd = flip[f]?F(f,(c+1)%3):F(f,(c+2)%3);
|
|
|
- const auto & eV = (V.row(fd)-V.row(fs)).normalized();
|
|
|
- // Loop over and find max dihedral angle
|
|
|
- typename DerivedV::Scalar max_di = -1;
|
|
|
- int max_ne = -1;
|
|
|
- typename Eigen::Matrix< typename DerivedV::Scalar, 1, 3> max_nN;
|
|
|
- for(const auto & ne : neighbors)
|
|
|
+ if(!EH[ne2])
|
|
|
{
|
|
|
- const int nf = ne%m;
|
|
|
- if(nf == f)
|
|
|
- {
|
|
|
- continue;
|
|
|
- }
|
|
|
- const int nc = ne/m;
|
|
|
- // are faces consistently oriented
|
|
|
- //const int ns = F(nf,(nc+1)%3);
|
|
|
- const int nd = F(nf,(nc+2)%3);
|
|
|
- const bool cons = (flip[f]?fd:fs) == nd;
|
|
|
- const auto & nN = (cons? (flip[f]?-1:1.) : (flip[f]?1.:-1.) )*N.row(nf);
|
|
|
- const auto & ndi = M_PI - atan2( fN.cross(nN).dot(eV), fN.dot(nN));
|
|
|
- if(ndi>=max_di)
|
|
|
- {
|
|
|
- max_ne = ne;
|
|
|
- max_di = ndi;
|
|
|
- max_nN = nN;
|
|
|
- }
|
|
|
+ Q.push(ne2);
|
|
|
}
|
|
|
- if(max_ne>=0)
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ {
|
|
|
+ vG[id].resize(FHcount,3);
|
|
|
+ vJ[id].resize(FHcount,1);
|
|
|
+ //nG += FHcount;
|
|
|
+ size_t h = 0;
|
|
|
+ assert(counts(id) == IM.rows());
|
|
|
+ for(int i = 0;i<counts(id);i++)
|
|
|
+ {
|
|
|
+ const size_t f = IM(i);
|
|
|
+ //if(f_flip)
|
|
|
+ //{
|
|
|
+ // flip[f] = !flip[f];
|
|
|
+ //}
|
|
|
+ if(FH[f])
|
|
|
{
|
|
|
- const int nf = max_ne%m;
|
|
|
- const int nc = max_ne/m;
|
|
|
- const int nd = F(nf,(nc+2)%3);
|
|
|
- const bool cons = (flip[f]?fd:fs) == nd;
|
|
|
- flip[nf] = (cons ? flip[f] : !flip[f]);
|
|
|
- const int ne1 = nf+((nc+1)%3)*m;
|
|
|
- const int ne2 = nf+((nc+2)%3)*m;
|
|
|
- if(!EH[ne1])
|
|
|
- {
|
|
|
- Q.push(ne1);
|
|
|
- }
|
|
|
- if(!EH[ne2])
|
|
|
- {
|
|
|
- Q.push(ne2);
|
|
|
- }
|
|
|
+ vG[id].row(h) = (flip[f]?F.row(f).reverse().eval():F.row(f));
|
|
|
+ vJ[id](h,0) = f;
|
|
|
+ h++;
|
|
|
}
|
|
|
}
|
|
|
-
|
|
|
+ assert(h == FHcount);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Is A inside B? Assuming A and B are consistently oriented but closed and
|
|
|
+ // non-intersecting.
|
|
|
+ const auto & is_component_inside_other = [](
|
|
|
+ const Eigen::PlainObjectBase<DerivedV> & V,
|
|
|
+ const MatrixXV & BC,
|
|
|
+ const MatrixXG & A,
|
|
|
+ const MatrixXJ & AJ,
|
|
|
+ const MatrixXG & B)->bool
|
|
|
+ {
|
|
|
+ const auto & bounding_box = [](
|
|
|
+ const Eigen::PlainObjectBase<DerivedV> & V,
|
|
|
+ const MatrixXG & F)->
|
|
|
+ MatrixXV
|
|
|
+ {
|
|
|
+ MatrixXV BB(2,3);
|
|
|
+ BB<<
|
|
|
+ 1e26,1e26,1e26,
|
|
|
+ -1e26,-1e26,-1e26;
|
|
|
+ const size_t m = F.rows();
|
|
|
+ for(size_t f = 0;f<m;f++)
|
|
|
{
|
|
|
- vG[id].resize(FHcount,3);
|
|
|
- vJ[id].resize(FHcount,1);
|
|
|
- nG += FHcount;
|
|
|
- size_t h = 0;
|
|
|
- for(int i = 0;i<num_id;i++)
|
|
|
+ for(size_t c = 0;c<3;c++)
|
|
|
{
|
|
|
- const size_t f = IM(i);
|
|
|
- //if(f_flip)
|
|
|
- //{
|
|
|
- // flip[f] = !flip[f];
|
|
|
- //}
|
|
|
- if(FH[f])
|
|
|
- {
|
|
|
- vG[id].row(h) = (flip[f]?F.row(f).reverse().eval():F.row(f));
|
|
|
- vJ[id](h,0) = f;
|
|
|
- h++;
|
|
|
- }
|
|
|
+ const auto & vfc = V.row(F(f,c));
|
|
|
+ BB.row(0) = BB.row(0).array().min(vfc.array()).eval();
|
|
|
+ BB.row(1) = BB.row(1).array().max(vfc.array()).eval();
|
|
|
}
|
|
|
- assert(h == FHcount);
|
|
|
}
|
|
|
+ return BB;
|
|
|
+ };
|
|
|
+ // A lot of the time we're dealing with unrelated, distant components: cull
|
|
|
+ // them.
|
|
|
+ MatrixXV ABB = bounding_box(V,A);
|
|
|
+ MatrixXV BBB = bounding_box(V,B);
|
|
|
+ if( (BBB.row(0)-ABB.row(1)).maxCoeff()>0 ||
|
|
|
+ (ABB.row(0)-BBB.row(1)).maxCoeff()>0 )
|
|
|
+ {
|
|
|
+ // bounding boxes do not overlap
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ ////////////////////////////////////////////////////////////////////////
|
|
|
+ // POTENTIAL ROBUSTNESS WEAK AREA
|
|
|
+ ////////////////////////////////////////////////////////////////////////
|
|
|
+ //
|
|
|
+ // q could be so close (<~1e-16) to B that the winding number is not a robust way to
|
|
|
+ // determine inside/outsideness. We could try to find a _better_ q which is
|
|
|
+ // farther away, but couldn't they all be bad?
|
|
|
+ MatrixXV q = BC.row(AJ(1));
|
|
|
+ // In a perfect world, it's enough to test a single point.
|
|
|
+ double w;
|
|
|
+ winding_number_3(
|
|
|
+ V.data(),V.rows(),
|
|
|
+ B.data(),B.rows(),
|
|
|
+ q.data(),1,&w);
|
|
|
+ return fabs(w)>0.5;
|
|
|
+ };
|
|
|
+
|
|
|
+ // Reject components which are completely inside other components
|
|
|
+ vector<bool> keep(ncc,true);
|
|
|
+ size_t nG = 0;
|
|
|
+ // This is O( ncc * ncc * m)
|
|
|
+ for(size_t id = 0;id<ncc;id++)
|
|
|
+ {
|
|
|
+ for(size_t oid = 0;oid<ncc;oid++)
|
|
|
+ {
|
|
|
+ if(id == oid)
|
|
|
+ {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ keep[id] = keep[id] &&
|
|
|
+ !is_component_inside_other(V,BC,vG[id],vJ[id],vG[oid]);
|
|
|
+ }
|
|
|
+ if(keep[id])
|
|
|
+ {
|
|
|
+ nG += vJ[id].rows();
|
|
|
}
|
|
|
}
|
|
|
+
|
|
|
// collect G and J across components
|
|
|
G.resize(nG,3);
|
|
|
J.resize(nG,1);
|
|
|
{
|
|
|
size_t off = 0;
|
|
|
- for(Index id = 0;id<ncc;id++)
|
|
|
+ for(Index id = 0;id<(Index)ncc;id++)
|
|
|
{
|
|
|
- assert(vG[id].rows() == vJ[id].rows());
|
|
|
- G.block(off,0,vG[id].rows(),vG[id].cols()) = vG[id];
|
|
|
- J.block(off,0,vJ[id].rows(),vJ[id].cols()) = vJ[id];
|
|
|
- off += vG[id].rows();
|
|
|
+ if(keep[id])
|
|
|
+ {
|
|
|
+ assert(vG[id].rows() == vJ[id].rows());
|
|
|
+ G.block(off,0,vG[id].rows(),vG[id].cols()) = vG[id];
|
|
|
+ J.block(off,0,vJ[id].rows(),vJ[id].cols()) = vJ[id];
|
|
|
+ off += vG[id].rows();
|
|
|
+ }
|
|
|
}
|
|
|
}
|
|
|
}
|