|
@@ -9,6 +9,7 @@
|
|
|
#include "per_face_normals.h"
|
|
|
#include "writePLY.h"
|
|
|
#include "sort_angles.h"
|
|
|
+#include "order_facets_around_edges.h"
|
|
|
|
|
|
#include <Eigen/Geometry>
|
|
|
#include <vector>
|
|
@@ -33,13 +34,8 @@ IGL_INLINE void igl::outer_hull(
|
|
|
Eigen::PlainObjectBase<DerivedJ> & J,
|
|
|
Eigen::PlainObjectBase<Derivedflip> & flip)
|
|
|
{
|
|
|
- std::cout.precision(20);
|
|
|
- //for (size_t i=0; i<V.rows(); i++) {
|
|
|
- // std::cout << "v " << V.row(i) << std::endl;
|
|
|
- //}
|
|
|
#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
std::cerr << "Extracting outer hull" << std::endl;
|
|
|
- writePLY("outer_hull_input.ply", V, F);
|
|
|
#endif
|
|
|
using namespace Eigen;
|
|
|
using namespace std;
|
|
@@ -87,197 +83,16 @@ IGL_INLINE void igl::outer_hull(
|
|
|
}
|
|
|
#endif
|
|
|
|
|
|
- // TODO:
|
|
|
- // uE --> face-edge index, sorted CCW around edge according to normal
|
|
|
- // uE --> sorted order index
|
|
|
- // uE --> bool, whether needed to flip face to make "consistent" with unique
|
|
|
- // edge
|
|
|
- // Place order of each half-edge in its corresponding sorted list around edge
|
|
|
+ std::vector<std::vector<typename DerivedF::Index> > uE2oE;
|
|
|
+ std::vector<std::vector<bool> > uE2C;
|
|
|
+ order_facets_around_edges(V, F, N, E, uE, EMAP, uE2E, uE2oE, uE2C);
|
|
|
+ uE2E = uE2oE;
|
|
|
VectorXI diIM(3*m);
|
|
|
- // Whether face's edge used for sorting is consistent with unique edge
|
|
|
- VectorXI dicons(3*m);
|
|
|
- // dihedral angles of faces around edge with face of edge in dicons
|
|
|
- vector<vector<typename Eigen::Vector2d> > di(uE2E.size());
|
|
|
- // For each list of face-edges incide on a unique edge
|
|
|
- for(size_t ui = 0;ui<(size_t)uE.rows();ui++)
|
|
|
- {
|
|
|
- // Base normal vector to orient against
|
|
|
- const auto fe0 = uE2E[ui][0];
|
|
|
- const RowVector3N & eVp = N.row(fe0%m);
|
|
|
- MatrixXd di_I(uE2E[ui].size(),3);
|
|
|
-
|
|
|
- const typename DerivedF::Scalar o = F(fe0%m, fe0/m);
|
|
|
- const typename DerivedF::Scalar d = F(fe0%m,((fe0/m)+2)%3);
|
|
|
- const typename DerivedF::Scalar s = F(fe0%m,((fe0/m)+1)%3);
|
|
|
- // Edge vector
|
|
|
- auto eV = (V.row(d)-V.row(s)).normalized();
|
|
|
- auto edge_len = (V.row(d) - V.row(s)).norm();
|
|
|
- auto edge_valance = uE2E[ui].size();
|
|
|
- auto eO = V.row(o) - V.row(s);
|
|
|
- assert(edge_valance % 2 == 0);
|
|
|
- const typename DerivedV::Scalar EPS = 1e-12;
|
|
|
- bool degenerated = !eV.allFinite() || edge_len < EPS;
|
|
|
- bool all_faces_are_degenerated_and_coplanar = false;
|
|
|
-#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
- if (degenerated && edge_valance > 2) {
|
|
|
- cerr.precision(30);
|
|
|
- std::cerr << ui << ": " << (V.row(d) - V.row(s)).norm() << std::endl;
|
|
|
- std::cerr << "Edge valance: " << edge_valance << std::endl;
|
|
|
- std::cerr << V.row(d) << std::endl;
|
|
|
- std::cerr << V.row(s) << std::endl;
|
|
|
- }
|
|
|
-#endif
|
|
|
- if (degenerated) {
|
|
|
- const size_t num_adj_faces = uE2E[ui].size();
|
|
|
- Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, 3>
|
|
|
- normals(num_adj_faces, 3);
|
|
|
- for (size_t fei=0; fei<num_adj_faces; fei++) {
|
|
|
- const auto & fe = uE2E[ui][fei];
|
|
|
- const auto f = fe % m;
|
|
|
- const RowVector3N & n = N.row(f);
|
|
|
- normals.row(fei) = n;
|
|
|
- }
|
|
|
- for (size_t i=0; i<num_adj_faces; i++) {
|
|
|
- size_t j = (i+1) % num_adj_faces;
|
|
|
- eV = normals.row(i).cross(normals.row(j));
|
|
|
- auto length = eV.norm();
|
|
|
- if (length > 0) {
|
|
|
- eV /= length;
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- if (!eV.allFinite() || eV.norm() < EPS) {
|
|
|
- //cerr << "This is bad... all adj face normals are colinear" << std::endl;
|
|
|
- eV.setZero();
|
|
|
- all_faces_are_degenerated_and_coplanar = true;
|
|
|
- }
|
|
|
- if (degenerated){
|
|
|
- // Adjust edge direction.
|
|
|
- Vector3F in_face_vec = V.row(o) - V.row(s);
|
|
|
- Vector3F edge = eV;
|
|
|
- if (edge.cross(in_face_vec).dot(eVp) < 0) {
|
|
|
-#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
- cerr << "Flipping edge..." << std::endl;
|
|
|
-#endif
|
|
|
- eV *= -1;
|
|
|
- }
|
|
|
- //cerr << "Resolved: " << eV << std::endl;
|
|
|
- }
|
|
|
-#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
- if (degenerated) {
|
|
|
- cerr << "eV: " << eV << std::endl;
|
|
|
- }
|
|
|
-#endif
|
|
|
-
|
|
|
-
|
|
|
- vector<bool> cons(uE2E[ui].size());
|
|
|
- // Loop over incident face edges
|
|
|
- for(size_t fei = 0;fei<uE2E[ui].size();fei++)
|
|
|
- {
|
|
|
- const auto & fe = uE2E[ui][fei];
|
|
|
- const auto f = fe % m;
|
|
|
- const auto c = fe / m;
|
|
|
- // source should match destination to be consistent
|
|
|
- cons[fei] = (d == F(f,(c+1)%3));
|
|
|
- assert( cons[fei] || (d == F(f,(c+2)%3)));
|
|
|
- assert(!cons[fei] || (s == F(f,(c+2)%3)));
|
|
|
- assert(!cons[fei] || (d == F(f,(c+1)%3)));
|
|
|
- // Angle between n and f
|
|
|
- const RowVector3N & n = N.row(f);
|
|
|
-#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
- if (degenerated)
|
|
|
- cerr << "n " << fei << ": " << n << std::endl;
|
|
|
-#endif
|
|
|
- if (!all_faces_are_degenerated_and_coplanar) {
|
|
|
- di_I(fei, 0) = eVp.cross(n).dot(eV);
|
|
|
- } else {
|
|
|
- auto crossed = eVp.cross(n);
|
|
|
- di_I(fei, 0) = crossed.norm();
|
|
|
- int sign = eVp.cross(crossed).dot(eO);
|
|
|
- if (sign < 0) {
|
|
|
- di_I(fei, 0) *= -1;
|
|
|
- }
|
|
|
- }
|
|
|
- di_I(fei, 1) = eVp.dot(n);
|
|
|
- assert(di_I(fei,0) == di_I(fei,0) && "NaN Alert!");
|
|
|
- assert(di_I(fei,1) == di_I(fei,1) && "NaN Alert!");
|
|
|
- if (cons[fei]) {
|
|
|
- di_I(fei, 0) *= -1;
|
|
|
- di_I(fei, 1) *= -1;
|
|
|
- }
|
|
|
- di_I(fei, 0) *= -1; // Sort clockwise.
|
|
|
- // This signing is very important to make sure different edges sort
|
|
|
- // duplicate faces the same way, regardless of their orientations
|
|
|
- di_I(fei,2) = (cons[fei]?1.:-1.)*(f+1);
|
|
|
- }
|
|
|
-
|
|
|
-#if 0
|
|
|
- // Despite the effort to get stable normals the atan2 up doesn't
|
|
|
- // compute (exactly) -θ for -n if it computes θ for n. So just
|
|
|
- // explicitly check if there's a duplicate face
|
|
|
- // Shitty O(val^2) implementation
|
|
|
- for(size_t fei = 0;fei<uE2E[ui].size();fei++)
|
|
|
- {
|
|
|
- const auto & fe = uE2E[ui][fei];
|
|
|
- const auto f = fe % m;
|
|
|
- for(size_t gei = fei+1;gei<uE2E[ui].size();gei++)
|
|
|
- {
|
|
|
- const auto & ge = uE2E[ui][gei];
|
|
|
- const auto g = ge % m;
|
|
|
- if(duplicate_simplex(f,g))
|
|
|
- {
|
|
|
-#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
- cout<<"Forcing duplicate: "<<(f+1)<<","<<(g+1)<<endl;
|
|
|
-#endif
|
|
|
- di_I(gei,0) = di_I(fei,0);
|
|
|
- }
|
|
|
+ for (auto ue : uE2E) {
|
|
|
+ for (size_t i=0; i<ue.size(); i++) {
|
|
|
+ auto fe = ue[i];
|
|
|
+ diIM[fe] = i;
|
|
|
}
|
|
|
- }
|
|
|
-#endif
|
|
|
- VectorXi IM;
|
|
|
- //igl::sort(di[ui],true,di[ui],IM);
|
|
|
- // Sort, but break ties using "signed index" to ensure that duplicates
|
|
|
- // always show up in same order.
|
|
|
- igl::sort_angles(di_I, IM);
|
|
|
- vector<typename DerivedF::Index> temp = uE2E[ui];
|
|
|
-#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
- std::cout.precision(20);
|
|
|
- //std::cout << "sorted" << std::endl;
|
|
|
-#endif
|
|
|
- for(size_t fei = 0;fei<uE2E[ui].size();fei++)
|
|
|
- {
|
|
|
-#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
- //std::cout << di_I.row(IM(fei)) << std::endl;
|
|
|
-#endif
|
|
|
- uE2E[ui][fei] = temp[IM(fei)];
|
|
|
- const auto & fe = uE2E[ui][fei];
|
|
|
- diIM(fe) = fei;
|
|
|
- dicons(fe) = cons[IM(fei)];
|
|
|
- }
|
|
|
-
|
|
|
- di[ui].resize(uE2E[ui].size());
|
|
|
- for (size_t i=0; i<di[ui].size(); i++) {
|
|
|
- di[ui][i] = di_I.row(IM(i)).segment<2>(0);
|
|
|
- }
|
|
|
-
|
|
|
- //MatrixXd s_di_I;
|
|
|
- //igl::sortrows(di_I,true,s_di_I,IM);
|
|
|
- //di[ui].resize(uE2E[ui].size());
|
|
|
- //for(size_t i = 0;i<di[ui].size();i++)
|
|
|
- //{
|
|
|
- // di[ui][i] = s_di_I(i,0);
|
|
|
- //}
|
|
|
-
|
|
|
- //// copy old list
|
|
|
- //vector<typename DerivedF::Index> temp = uE2E[ui];
|
|
|
- //for(size_t fei = 0;fei<uE2E[ui].size();fei++)
|
|
|
- //{
|
|
|
- // uE2E[ui][fei] = temp[IM(fei)];
|
|
|
- // const auto & fe = uE2E[ui][fei];
|
|
|
- // diIM(fe) = fei;
|
|
|
- // dicons(fe) = cons[IM(fei)];
|
|
|
- //}
|
|
|
}
|
|
|
|
|
|
vector<vector<vector<Index > > > TT,_1;
|
|
@@ -370,7 +185,7 @@ IGL_INLINE void igl::outer_hull(
|
|
|
std::cout << "edge: " << e << ", ue: " << EMAP(e) << std::endl;
|
|
|
std::cout << "face: " << f << std::endl;
|
|
|
std::cout << "corner: " << c << std::endl;
|
|
|
- std::cout << "consistent: " << dicons(e) << std::endl;
|
|
|
+ std::cout << "consistent: " << uE2C[EMAP(e)][diIM[e]] << std::endl;
|
|
|
#endif
|
|
|
// Should never see edge again...
|
|
|
if(EH[e] == true)
|
|
@@ -394,9 +209,9 @@ IGL_INLINE void igl::outer_hull(
|
|
|
} else {
|
|
|
std::cout << " ";
|
|
|
}
|
|
|
- std::cout << i << ": " << di[EMAP(e)][i].transpose()
|
|
|
+ std::cout << i << ": "
|
|
|
<< " (e: " << uE2E[EMAP(e)][i] << ", f: "
|
|
|
- << uE2E[EMAP(e)][i] % m * (dicons(uE2E[EMAP(e)][i]) ? 1:-1) << ")" << std::endl;
|
|
|
+ << uE2E[EMAP(e)][i] % m * (uE2C[EMAP(e)][i] ? 1:-1) << ")" << std::endl;
|
|
|
}
|
|
|
#endif
|
|
|
//// find overlapping face-edges
|
|
@@ -414,7 +229,7 @@ IGL_INLINE void igl::outer_hull(
|
|
|
//const auto es = F(fe0%m,((fe0/m)+1)%3);
|
|
|
|
|
|
// is edge consistent with edge of face used for sorting
|
|
|
- const int e_cons = (dicons(e) ? 1: -1);
|
|
|
+ const int e_cons = (uE2C[EMAP(e)][diIM(e)] ? 1: -1);
|
|
|
int nfei = -1;
|
|
|
// Loop once around trying to find suitable next face
|
|
|
for(size_t step = 1; step<val+2;step++)
|
|
@@ -581,18 +396,19 @@ IGL_INLINE void igl::outer_hull(
|
|
|
// Is A inside B? Assuming A and B are consistently oriented but closed and
|
|
|
// non-intersecting.
|
|
|
const auto & is_component_inside_other = [](
|
|
|
- const Eigen::PlainObjectBase<DerivedV> & V,
|
|
|
+ const Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> & V,
|
|
|
const MatrixXV & BC,
|
|
|
const MatrixXG & A,
|
|
|
const MatrixXJ & AJ,
|
|
|
const MatrixXG & B)->bool
|
|
|
{
|
|
|
+ typedef Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> Matrix;
|
|
|
const auto & bounding_box = [](
|
|
|
- const Eigen::PlainObjectBase<DerivedV> & V,
|
|
|
+ const Matrix & V,
|
|
|
const MatrixXG & F)->
|
|
|
- MatrixXV
|
|
|
+ Matrix
|
|
|
{
|
|
|
- MatrixXV BB(2,3);
|
|
|
+ Matrix BB(2,3);
|
|
|
BB<<
|
|
|
1e26,1e26,1e26,
|
|
|
-1e26,-1e26,-1e26;
|
|
@@ -610,8 +426,8 @@ IGL_INLINE void igl::outer_hull(
|
|
|
};
|
|
|
// A lot of the time we're dealing with unrelated, distant components: cull
|
|
|
// them.
|
|
|
- MatrixXV ABB = bounding_box(V,A);
|
|
|
- MatrixXV BBB = bounding_box(V,B);
|
|
|
+ Matrix ABB = bounding_box(V,A);
|
|
|
+ Matrix BBB = bounding_box(V,B);
|
|
|
if( (BBB.row(0)-ABB.row(1)).maxCoeff()>0 ||
|
|
|
(ABB.row(0)-BBB.row(1)).maxCoeff()>0 )
|
|
|
{
|
|
@@ -622,34 +438,33 @@ IGL_INLINE void igl::outer_hull(
|
|
|
// POTENTIAL ROBUSTNESS WEAK AREA
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
//
|
|
|
+
|
|
|
+ // winding_number_3 expects colmajor
|
|
|
// q could be so close (<~1e-15) to B that the winding number is not a robust way to
|
|
|
// determine inside/outsideness. We could try to find a _better_ q which is
|
|
|
// farther away, but couldn't they all be bad?
|
|
|
- MatrixXV q = BC.row(AJ(0));
|
|
|
+ double q[3] = {
|
|
|
+ CGAL::to_double(BC(AJ(0), 0)),
|
|
|
+ CGAL::to_double(BC(AJ(0), 1)),
|
|
|
+ CGAL::to_double(BC(AJ(0), 2)) };
|
|
|
// In a perfect world, it's enough to test a single point.
|
|
|
double w;
|
|
|
-
|
|
|
- // winding_number_3 expects colmajor
|
|
|
- const typename DerivedV::Scalar * Vdata;
|
|
|
+ const double * Vdata;
|
|
|
Vdata = V.data();
|
|
|
- Matrix<
|
|
|
- typename DerivedV::Scalar,
|
|
|
- DerivedV::RowsAtCompileTime,
|
|
|
- DerivedV::ColsAtCompileTime,
|
|
|
- ColMajor> Vcol;
|
|
|
- if(DerivedV::IsRowMajor)
|
|
|
- {
|
|
|
- // copy to convert to colmajor
|
|
|
- Vcol = V;
|
|
|
- Vdata = Vcol.data();
|
|
|
- }
|
|
|
winding_number_3(
|
|
|
Vdata,V.rows(),
|
|
|
B.data(),B.rows(),
|
|
|
- q.data(),1,&w);
|
|
|
- return fabs(w)>0.5;
|
|
|
+ q,1,&w);
|
|
|
+ return w > 0.5 || w < -0.5;
|
|
|
};
|
|
|
|
|
|
+ Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> Vcol(V.rows(), V.cols());
|
|
|
+ for (size_t i=0; i<V.rows(); i++) {
|
|
|
+ for (size_t j=0; j<V.cols(); j++) {
|
|
|
+ Vcol(i, j) = CGAL::to_double(V(i, j));
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
// Reject components which are completely inside other components
|
|
|
vector<bool> keep(ncc,true);
|
|
|
size_t nG = 0;
|
|
@@ -662,7 +477,7 @@ IGL_INLINE void igl::outer_hull(
|
|
|
{
|
|
|
continue;
|
|
|
}
|
|
|
- const bool inside = is_component_inside_other(V,BC,vG[id],vJ[id],vG[oid]);
|
|
|
+ const bool inside = is_component_inside_other(Vcol,BC,vG[id],vJ[id],vG[oid]);
|
|
|
#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
cout<<id<<" is inside "<<oid<<" ? "<<inside<<endl;
|
|
|
#endif
|
|
@@ -710,476 +525,6 @@ IGL_INLINE void igl::outer_hull(
|
|
|
return outer_hull(V,F,N,G,J,flip);
|
|
|
}
|
|
|
|
|
|
-template <
|
|
|
- typename Kernel,
|
|
|
- typename DerivedV,
|
|
|
- typename DerivedF,
|
|
|
- typename DerivedN,
|
|
|
- typename DerivedG,
|
|
|
- typename DerivedJ,
|
|
|
- typename Derivedflip>
|
|
|
-IGL_INLINE void igl::outer_hull_exact(
|
|
|
- const Eigen::PlainObjectBase<DerivedV> & V,
|
|
|
- const Eigen::PlainObjectBase<DerivedF> & F,
|
|
|
- const Eigen::PlainObjectBase<DerivedN> & N,
|
|
|
- Eigen::PlainObjectBase<DerivedG> & G,
|
|
|
- Eigen::PlainObjectBase<DerivedJ> & J,
|
|
|
- Eigen::PlainObjectBase<Derivedflip> & flip)
|
|
|
-{
|
|
|
- std::cout.precision(20);
|
|
|
- //for (size_t i=0; i<V.rows(); i++) {
|
|
|
- // std::cout << "v " << V.row(i) << std::endl;
|
|
|
- //}
|
|
|
-#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
- std::cerr << "Extracting outer hull" << std::endl;
|
|
|
- //writePLY("outer_hull_input.ply", V, F);
|
|
|
-#endif
|
|
|
- using namespace Eigen;
|
|
|
- using namespace std;
|
|
|
- typedef typename DerivedF::Index Index;
|
|
|
- Matrix<Index,DerivedF::RowsAtCompileTime,1> C;
|
|
|
- typedef Matrix<typename DerivedV::Scalar,Dynamic,DerivedV::ColsAtCompileTime> MatrixXV;
|
|
|
- typedef Matrix<typename DerivedF::Scalar,Dynamic,DerivedF::ColsAtCompileTime> MatrixXF;
|
|
|
- typedef Matrix<typename DerivedG::Scalar,Dynamic,DerivedG::ColsAtCompileTime> MatrixXG;
|
|
|
- typedef Matrix<typename DerivedJ::Scalar,Dynamic,DerivedJ::ColsAtCompileTime> MatrixXJ;
|
|
|
- typedef Matrix<typename DerivedN::Scalar,1,3> RowVector3N;
|
|
|
- const Index m = F.rows();
|
|
|
-
|
|
|
- const auto & duplicate_simplex = [&F](const int f, const int g)->bool
|
|
|
- {
|
|
|
- return
|
|
|
- (F(f,0) == F(g,0) && F(f,1) == F(g,1) && F(f,2) == F(g,2)) ||
|
|
|
- (F(f,1) == F(g,0) && F(f,2) == F(g,1) && F(f,0) == F(g,2)) ||
|
|
|
- (F(f,2) == F(g,0) && F(f,0) == F(g,1) && F(f,1) == F(g,2)) ||
|
|
|
- (F(f,0) == F(g,2) && F(f,1) == F(g,1) && F(f,2) == F(g,0)) ||
|
|
|
- (F(f,1) == F(g,2) && F(f,2) == F(g,1) && F(f,0) == F(g,0)) ||
|
|
|
- (F(f,2) == F(g,2) && F(f,0) == F(g,1) && F(f,1) == F(g,0));
|
|
|
- };
|
|
|
-
|
|
|
-#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
- cout<<"outer hull..."<<endl;
|
|
|
-#endif
|
|
|
-
|
|
|
-#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
- cout<<"edge map..."<<endl;
|
|
|
-#endif
|
|
|
- typedef Matrix<typename DerivedF::Scalar,Dynamic,2> MatrixX2I;
|
|
|
- typedef Matrix<typename DerivedF::Index,Dynamic,1> VectorXI;
|
|
|
- typedef Matrix<typename DerivedV::Scalar, 3, 1> Vector3F;
|
|
|
- MatrixX2I E,uE;
|
|
|
- VectorXI EMAP;
|
|
|
- vector<vector<typename DerivedF::Index> > uE2E;
|
|
|
- unique_edge_map(F,E,uE,EMAP,uE2E);
|
|
|
-#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
- for (size_t ui=0; ui<uE.rows(); ui++) {
|
|
|
- std::cout << ui << ": " << uE2E[ui].size() << " -- (";
|
|
|
- for (size_t i=0; i<uE2E[ui].size(); i++) {
|
|
|
- std::cout << uE2E[ui][i] << ", ";
|
|
|
- }
|
|
|
- std::cout << ")" << std::endl;
|
|
|
- }
|
|
|
-#endif
|
|
|
-
|
|
|
- // TODO:
|
|
|
- // uE --> face-edge index, sorted CCW around edge according to normal
|
|
|
- // uE --> sorted order index
|
|
|
- // uE --> bool, whether needed to flip face to make "consistent" with unique
|
|
|
- // edge
|
|
|
- // Place order of each half-edge in its corresponding sorted list around edge
|
|
|
- VectorXI diIM(3*m);
|
|
|
- // Whether face's edge used for sorting is consistent with unique edge
|
|
|
- VectorXI dicons(3*m);
|
|
|
- // dihedral angles of faces around edge with face of edge in dicons
|
|
|
- vector<vector<typename Eigen::Vector2d> > di(uE2E.size());
|
|
|
- // For each list of face-edges incide on a unique edge
|
|
|
- for(size_t ui = 0;ui<(size_t)uE.rows();ui++)
|
|
|
- {
|
|
|
- // Base normal vector to orient against
|
|
|
- const auto fe0 = uE2E[ui][0];
|
|
|
- const RowVector3N & eVp = N.row(fe0%m);
|
|
|
- MatrixXd di_I(uE2E[ui].size(),3);
|
|
|
-
|
|
|
- const typename DerivedF::Scalar o = F(fe0%m, fe0/m);
|
|
|
- const typename DerivedF::Scalar d = F(fe0%m,((fe0/m)+2)%3);
|
|
|
- const typename DerivedF::Scalar s = F(fe0%m,((fe0/m)+1)%3);
|
|
|
- // Edge vector
|
|
|
- typename Kernel::Vector_3 exact_eV(
|
|
|
- V(d, 0) - V(s, 0),
|
|
|
- V(d, 1) - V(s, 1),
|
|
|
- V(d, 2) - V(s, 2));
|
|
|
- auto sq_length = exact_eV.squared_length();
|
|
|
- if (sq_length > 0.0) {
|
|
|
- exact_eV = exact_eV / sq_length;
|
|
|
- }
|
|
|
- RowVector3N eV(
|
|
|
- CGAL::to_double(exact_eV[0]),
|
|
|
- CGAL::to_double(exact_eV[1]),
|
|
|
- CGAL::to_double(exact_eV[2]));
|
|
|
- if (sq_length > 0.0) {
|
|
|
- eV.normalize();
|
|
|
- }
|
|
|
-
|
|
|
- vector<bool> cons(uE2E[ui].size());
|
|
|
- // Loop over incident face edges
|
|
|
- for(size_t fei = 0;fei<uE2E[ui].size();fei++)
|
|
|
- {
|
|
|
- const auto & fe = uE2E[ui][fei];
|
|
|
- const auto f = fe % m;
|
|
|
- const auto c = fe / m;
|
|
|
- // source should match destination to be consistent
|
|
|
- cons[fei] = (d == F(f,(c+1)%3));
|
|
|
- assert( cons[fei] || (d == F(f,(c+2)%3)));
|
|
|
- assert(!cons[fei] || (s == F(f,(c+2)%3)));
|
|
|
- assert(!cons[fei] || (d == F(f,(c+1)%3)));
|
|
|
- // Angle between n and f
|
|
|
- const RowVector3N & n = N.row(f);
|
|
|
- di_I(fei, 0) = eVp.cross(n).dot(eV);
|
|
|
- di_I(fei, 1) = eVp.dot(n);
|
|
|
- assert(di_I(fei,0) == di_I(fei,0) && "NaN Alert!");
|
|
|
- assert(di_I(fei,1) == di_I(fei,1) && "NaN Alert!");
|
|
|
- if (cons[fei]) {
|
|
|
- di_I(fei, 0) *= -1;
|
|
|
- di_I(fei, 1) *= -1;
|
|
|
- }
|
|
|
- di_I(fei, 0) *= -1; // Sort clockwise.
|
|
|
- // This signing is very important to make sure different edges sort
|
|
|
- // duplicate faces the same way, regardless of their orientations
|
|
|
- di_I(fei,2) = (cons[fei]?1.:-1.)*(f+1);
|
|
|
- }
|
|
|
-
|
|
|
- VectorXi IM;
|
|
|
- // Sort, but break ties using "signed index" to ensure that duplicates
|
|
|
- // always show up in same order.
|
|
|
- igl::sort_angles(di_I, IM);
|
|
|
- vector<typename DerivedF::Index> temp = uE2E[ui];
|
|
|
-#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
- std::cout.precision(20);
|
|
|
- //std::cout << "sorted" << std::endl;
|
|
|
-#endif
|
|
|
- for(size_t fei = 0;fei<uE2E[ui].size();fei++)
|
|
|
- {
|
|
|
-#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
- //std::cout << di_I.row(IM(fei)) << std::endl;
|
|
|
-#endif
|
|
|
- uE2E[ui][fei] = temp[IM(fei)];
|
|
|
- const auto & fe = uE2E[ui][fei];
|
|
|
- diIM(fe) = fei;
|
|
|
- dicons(fe) = cons[IM(fei)];
|
|
|
- }
|
|
|
-
|
|
|
- di[ui].resize(uE2E[ui].size());
|
|
|
- for (size_t i=0; i<di[ui].size(); i++) {
|
|
|
- di[ui][i] = di_I.row(IM(i)).segment<2>(0);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- vector<vector<vector<Index > > > TT,_1;
|
|
|
- triangle_triangle_adjacency(E,EMAP,uE2E,false,TT,_1);
|
|
|
- VectorXI counts;
|
|
|
-#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
- cout<<"facet components..."<<endl;
|
|
|
-#endif
|
|
|
- facet_components(TT,C,counts);
|
|
|
- assert(C.maxCoeff()+1 == counts.rows());
|
|
|
- const size_t ncc = counts.rows();
|
|
|
- G.resize(0,F.cols());
|
|
|
- J.resize(0,1);
|
|
|
- flip.setConstant(m,1,false);
|
|
|
-
|
|
|
-#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
- cout<<"reindex..."<<endl;
|
|
|
-#endif
|
|
|
- // H contains list of faces on outer hull;
|
|
|
- vector<bool> FH(m,false);
|
|
|
- vector<bool> EH(3*m,false);
|
|
|
- vector<MatrixXG> vG(ncc);
|
|
|
- vector<MatrixXJ> vJ(ncc);
|
|
|
- vector<MatrixXJ> vIM(ncc);
|
|
|
- size_t face_count = 0;
|
|
|
- for(size_t id = 0;id<ncc;id++)
|
|
|
- {
|
|
|
- vIM[id].resize(counts[id],1);
|
|
|
- }
|
|
|
- // current index into each IM
|
|
|
- vector<size_t> g(ncc,0);
|
|
|
- // place order of each face in its respective component
|
|
|
- for(Index f = 0;f<m;f++)
|
|
|
- {
|
|
|
- vIM[C(f)](g[C(f)]++) = f;
|
|
|
- }
|
|
|
-
|
|
|
-#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
- cout<<"barycenters..."<<endl;
|
|
|
-#endif
|
|
|
- // assumes that "resolve" has handled any coplanar cases correctly and nearly
|
|
|
- // coplanar cases can be sorted based on barycenter.
|
|
|
- MatrixXV BC;
|
|
|
- barycenter(V,F,BC);
|
|
|
-
|
|
|
-#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
- cout<<"loop over CCs (="<<ncc<<")..."<<endl;
|
|
|
-#endif
|
|
|
- for(Index id = 0;id<(Index)ncc;id++)
|
|
|
- {
|
|
|
- auto & IM = vIM[id];
|
|
|
- // starting face that's guaranteed to be on the outer hull and in this
|
|
|
- // component
|
|
|
- int f;
|
|
|
- bool f_flip;
|
|
|
-#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
- cout<<"outer facet..."<<endl;
|
|
|
-#endif
|
|
|
- outer_facet(V,F,N,IM,f,f_flip);
|
|
|
- int FHcount = 1;
|
|
|
- FH[f] = true;
|
|
|
- // Q contains list of face edges to continue traversing upong
|
|
|
- queue<int> Q;
|
|
|
- Q.push(f+0*m);
|
|
|
- Q.push(f+1*m);
|
|
|
- Q.push(f+2*m);
|
|
|
- flip(f) = f_flip;
|
|
|
- //std::cout << "face " << face_count++ << ": " << f << std::endl;
|
|
|
- //std::cout << "f " << F.row(f).array()+1 << std::endl;
|
|
|
- //cout<<"flip("<<f<<") = "<<(flip(f)?"true":"false")<<endl;
|
|
|
-#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
- cout<<"BFS..."<<endl;
|
|
|
-#endif
|
|
|
- while(!Q.empty())
|
|
|
- {
|
|
|
- // face-edge
|
|
|
- const int e = Q.front();
|
|
|
- Q.pop();
|
|
|
- // face
|
|
|
- const int f = e%m;
|
|
|
- // corner
|
|
|
- const int c = e/m;
|
|
|
-#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
- std::cout << "edge: " << e << ", ue: " << EMAP(e) << std::endl;
|
|
|
- std::cout << "face: " << f << std::endl;
|
|
|
- std::cout << "corner: " << c << std::endl;
|
|
|
- std::cout << "consistent: " << dicons(e) << std::endl;
|
|
|
-#endif
|
|
|
- // Should never see edge again...
|
|
|
- if(EH[e] == true)
|
|
|
- {
|
|
|
- continue;
|
|
|
- }
|
|
|
- EH[e] = true;
|
|
|
- // source of edge according to f
|
|
|
- const int fs = flip(f)?F(f,(c+2)%3):F(f,(c+1)%3);
|
|
|
- // destination of edge according to f
|
|
|
- const int fd = flip(f)?F(f,(c+1)%3):F(f,(c+2)%3);
|
|
|
- // edge valence
|
|
|
- const size_t val = uE2E[EMAP(e)].size();
|
|
|
-#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
- for (size_t i=0; i<val; i++) {
|
|
|
- if (i == diIM(e)) {
|
|
|
- std::cout << "* ";
|
|
|
- } else {
|
|
|
- std::cout << " ";
|
|
|
- }
|
|
|
- std::cout << i << ": " << di[EMAP(e)][i].transpose()
|
|
|
- << " (e: " << uE2E[EMAP(e)][i] << ", f: "
|
|
|
- << uE2E[EMAP(e)][i] % m * (dicons(uE2E[EMAP(e)][i]) ? 1:-1) << ")" << std::endl;
|
|
|
- }
|
|
|
-#endif
|
|
|
- // is edge consistent with edge of face used for sorting
|
|
|
- const int e_cons = (dicons(e) ? 1: -1);
|
|
|
- int nfei = -1;
|
|
|
- // Loop once around trying to find suitable next face
|
|
|
- for(size_t step = 1; step<val+2;step++)
|
|
|
- {
|
|
|
- const int nfei_new = (diIM(e) + 2*val + e_cons*step*(flip(f)?-1:1))%val;
|
|
|
- const int nf = uE2E[EMAP(e)][nfei_new] % m;
|
|
|
- {
|
|
|
- // Only use this face if not already seen
|
|
|
- if(!FH[nf])
|
|
|
- {
|
|
|
- nfei = nfei_new;
|
|
|
- }
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- int max_ne = -1;
|
|
|
- if(nfei >= 0)
|
|
|
- {
|
|
|
- max_ne = uE2E[EMAP(e)][nfei];
|
|
|
- }
|
|
|
-
|
|
|
- if(max_ne>=0)
|
|
|
- {
|
|
|
- // face of neighbor
|
|
|
- const int nf = max_ne%m;
|
|
|
-#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
- if(!FH[nf])
|
|
|
- {
|
|
|
- // first time seeing face
|
|
|
- cout<<(f+1)<<" --> "<<(nf+1)<<endl;
|
|
|
- }
|
|
|
-#endif
|
|
|
- FH[nf] = true;
|
|
|
- //std::cout << "face " << face_count++ << ": " << nf << std::endl;
|
|
|
- //std::cout << "f " << F.row(nf).array()+1 << std::endl;
|
|
|
- FHcount++;
|
|
|
- // corner of neighbor
|
|
|
- const int nc = max_ne/m;
|
|
|
- const int nd = F(nf,(nc+2)%3);
|
|
|
- const bool cons = (flip(f)?fd:fs) == nd;
|
|
|
- flip(nf) = (cons ? flip(f) : !flip(f));
|
|
|
- //cout<<"flip("<<nf<<") = "<<(flip(nf)?"true":"false")<<endl;
|
|
|
- const int ne1 = nf+((nc+1)%3)*m;
|
|
|
- const int ne2 = nf+((nc+2)%3)*m;
|
|
|
- if(!EH[ne1])
|
|
|
- {
|
|
|
- Q.push(ne1);
|
|
|
- }
|
|
|
- if(!EH[ne2])
|
|
|
- {
|
|
|
- Q.push(ne2);
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- {
|
|
|
- vG[id].resize(FHcount,3);
|
|
|
- vJ[id].resize(FHcount,1);
|
|
|
- //nG += FHcount;
|
|
|
- size_t h = 0;
|
|
|
- assert(counts(id) == IM.rows());
|
|
|
- for(int i = 0;i<counts(id);i++)
|
|
|
- {
|
|
|
- const size_t f = IM(i);
|
|
|
- //if(f_flip)
|
|
|
- //{
|
|
|
- // flip(f) = !flip(f);
|
|
|
- //}
|
|
|
- if(FH[f])
|
|
|
- {
|
|
|
- vG[id].row(h) = (flip(f)?F.row(f).reverse().eval():F.row(f));
|
|
|
- vJ[id](h,0) = f;
|
|
|
- h++;
|
|
|
- }
|
|
|
- }
|
|
|
- assert((int)h == FHcount);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // Is A inside B? Assuming A and B are consistently oriented but closed and
|
|
|
- // non-intersecting.
|
|
|
- const auto & is_component_inside_other = [](
|
|
|
- const Eigen::PlainObjectBase<DerivedV> & V,
|
|
|
- const MatrixXV & BC,
|
|
|
- const MatrixXG & A,
|
|
|
- const MatrixXJ & AJ,
|
|
|
- const MatrixXG & B)->bool
|
|
|
- {
|
|
|
- const auto & bounding_box = [](
|
|
|
- const Eigen::PlainObjectBase<DerivedV> & V,
|
|
|
- const MatrixXG & F)->
|
|
|
- MatrixXV
|
|
|
- {
|
|
|
- MatrixXV BB(2,3);
|
|
|
- BB<<
|
|
|
- 1e26,1e26,1e26,
|
|
|
- -1e26,-1e26,-1e26;
|
|
|
- const size_t m = F.rows();
|
|
|
- for(size_t f = 0;f<m;f++)
|
|
|
- {
|
|
|
- for(size_t c = 0;c<3;c++)
|
|
|
- {
|
|
|
- const auto & vfc = V.row(F(f,c));
|
|
|
- BB.row(0) = BB.row(0).array().min(vfc.array()).eval();
|
|
|
- BB.row(1) = BB.row(1).array().max(vfc.array()).eval();
|
|
|
- }
|
|
|
- }
|
|
|
- return BB;
|
|
|
- };
|
|
|
- // A lot of the time we're dealing with unrelated, distant components: cull
|
|
|
- // them.
|
|
|
- MatrixXV ABB = bounding_box(V,A);
|
|
|
- MatrixXV BBB = bounding_box(V,B);
|
|
|
- if( (BBB.row(0)-ABB.row(1)).maxCoeff()>0 ||
|
|
|
- (ABB.row(0)-BBB.row(1)).maxCoeff()>0 )
|
|
|
- {
|
|
|
- // bounding boxes do not overlap
|
|
|
- return false;
|
|
|
- }
|
|
|
- ////////////////////////////////////////////////////////////////////////
|
|
|
- // POTENTIAL ROBUSTNESS WEAK AREA
|
|
|
- ////////////////////////////////////////////////////////////////////////
|
|
|
- //
|
|
|
- // q could be so close (<~1e-15) to B that the winding number is not a robust way to
|
|
|
- // determine inside/outsideness. We could try to find a _better_ q which is
|
|
|
- // farther away, but couldn't they all be bad?
|
|
|
- Matrix<double, 1, 3> q(
|
|
|
- CGAL::to_double(BC(AJ(0), 0)),
|
|
|
- CGAL::to_double(BC(AJ(0), 1)),
|
|
|
- CGAL::to_double(BC(AJ(0), 2)));
|
|
|
- // In a perfect world, it's enough to test a single point.
|
|
|
- double w;
|
|
|
-
|
|
|
- // winding_number_3 expects colmajor
|
|
|
- double* Vdata;
|
|
|
- Matrix<double,
|
|
|
- DerivedV::RowsAtCompileTime,
|
|
|
- DerivedV::ColsAtCompileTime,
|
|
|
- ColMajor> Vcol(V.rows(), V.cols());
|
|
|
- for (size_t i=0; i<V.rows(); i++) {
|
|
|
- for (size_t j=0; j<V.cols(); j++) {
|
|
|
- Vcol(i,j) = CGAL::to_double(V(i,j));
|
|
|
- }
|
|
|
- }
|
|
|
- Vdata = Vcol.data();
|
|
|
- winding_number_3(
|
|
|
- Vdata,V.rows(),
|
|
|
- B.data(),B.rows(),
|
|
|
- q.data(),1,&w);
|
|
|
- return fabs(w)>0.5;
|
|
|
- };
|
|
|
-
|
|
|
- // Reject components which are completely inside other components
|
|
|
- vector<bool> keep(ncc,true);
|
|
|
- size_t nG = 0;
|
|
|
- // This is O( ncc * ncc * m)
|
|
|
- for(size_t id = 0;id<ncc;id++)
|
|
|
- {
|
|
|
- for(size_t oid = 0;oid<ncc;oid++)
|
|
|
- {
|
|
|
- if(id == oid)
|
|
|
- {
|
|
|
- continue;
|
|
|
- }
|
|
|
- const bool inside = is_component_inside_other(V,BC,vG[id],vJ[id],vG[oid]);
|
|
|
-#ifdef IGL_OUTER_HULL_DEBUG
|
|
|
- cout<<id<<" is inside "<<oid<<" ? "<<inside<<endl;
|
|
|
-#endif
|
|
|
- keep[id] = keep[id] && !inside;
|
|
|
- }
|
|
|
- if(keep[id])
|
|
|
- {
|
|
|
- nG += vJ[id].rows();
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // collect G and J across components
|
|
|
- G.resize(nG,3);
|
|
|
- J.resize(nG,1);
|
|
|
- {
|
|
|
- size_t off = 0;
|
|
|
- for(Index id = 0;id<(Index)ncc;id++)
|
|
|
- {
|
|
|
- if(keep[id])
|
|
|
- {
|
|
|
- assert(vG[id].rows() == vJ[id].rows());
|
|
|
- G.block(off,0,vG[id].rows(),vG[id].cols()) = vG[id];
|
|
|
- J.block(off,0,vJ[id].rows(),vJ[id].cols()) = vJ[id];
|
|
|
- off += vG[id].rows();
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
|
|
|
|
|
|
#ifdef IGL_STATIC_LIBRARY
|