|
@@ -10,7 +10,11 @@
|
|
|
#include "tan_half_angle.h"
|
|
|
#include "unique_edge_map.h"
|
|
|
#include "flip_edge.h"
|
|
|
+#include "EPS.h"
|
|
|
+#include "matlab_format.h"
|
|
|
#include <iostream>
|
|
|
+#include <queue>
|
|
|
+#include <map>
|
|
|
|
|
|
template <
|
|
|
typename Derivedl_in,
|
|
@@ -39,6 +43,8 @@ IGL_INLINE void igl::intrinsic_delaunay_triangulation(
|
|
|
|
|
|
// Copied from delaunay_triangulation
|
|
|
bool all_delaunay = false;
|
|
|
+ // Dumb O(#E * #flips). Use queue and gather only edges that could have
|
|
|
+ // changed to make this O(#E + #flips).
|
|
|
while(!all_delaunay)
|
|
|
{
|
|
|
all_delaunay = true;
|
|
@@ -48,7 +54,6 @@ IGL_INLINE void igl::intrinsic_delaunay_triangulation(
|
|
|
{
|
|
|
if(!is_intrinsic_delaunay(l,F,uE2E,uei))
|
|
|
{
|
|
|
- all_delaunay = false;
|
|
|
// update l just before flipping edge
|
|
|
// . //
|
|
|
// /|\ //
|
|
@@ -61,30 +66,6 @@ IGL_INLINE void igl::intrinsic_delaunay_triangulation(
|
|
|
// b\α|δ/c //
|
|
|
// \|/ //
|
|
|
// . //
|
|
|
- // Compute intrinsic length of oppposite edge
|
|
|
- assert(uE2E[uei].size() == 2 && "edge should have 2 incident faces");
|
|
|
- const Index he1 = uE2E[uei][0];
|
|
|
- const Index he2 = uE2E[uei][1];
|
|
|
- const Index f1 = he1%num_faces;
|
|
|
- const Index c1 = he1/num_faces;
|
|
|
- const Index f2 = he2%num_faces;
|
|
|
- const Index c2 = he2/num_faces;
|
|
|
- assert( std::abs(l(f1,c1)-l(f2,c2) < igl::EPS<Scalar>()) );
|
|
|
- const Scalar e = l(f1,c1);
|
|
|
- const Scalar a = l(f1,(c1+1)%3);
|
|
|
- const Scalar b = l(f1,(c1+2)%3);
|
|
|
- const Scalar c = l(f2,(c2+1)%3);
|
|
|
- const Scalar d = l(f2,(c2+2)%3);
|
|
|
- // tan(α/2)
|
|
|
- const Scalar tan_a_2= tan_half_angle(a,b,e);
|
|
|
- // tan(δ/2)
|
|
|
- const Scalar tan_d_2 = tan_half_angle(d,e,c);
|
|
|
- // tan((α+δ)/2)
|
|
|
- const Scalar tan_a_d_2 = (tan_a_2 + tan_d_2)/(1.0-tan_a_2*tan_d_2);
|
|
|
- // cos(α+δ)
|
|
|
- const Scalar cos_a_d =
|
|
|
- (1.0 - tan_a_d_2*tan_a_d_2)/(1.0+tan_a_d_2*tan_a_d_2);
|
|
|
- const Scalar f = sqrt(b*b + c*c - 2.0*b*c*cos_a_d);
|
|
|
// Annotated from flip_edge:
|
|
|
// Edge to flip [v1,v2] --> [v3,v4]
|
|
|
// Before:
|
|
@@ -103,13 +84,131 @@ IGL_INLINE void igl::intrinsic_delaunay_triangulation(
|
|
|
// \|/ \ /
|
|
|
// v2 v2
|
|
|
//
|
|
|
- l(f1,0) = f;
|
|
|
- l(f1,1) = b;
|
|
|
- l(f1,2) = c;
|
|
|
- l(f2,0) = f;
|
|
|
- l(f2,1) = d;
|
|
|
- l(f2,2) = a;
|
|
|
- flip_edge(F, E, uE, EMAP, uE2E, uei);
|
|
|
+ // Compute intrinsic length of oppposite edge
|
|
|
+ assert(uE2E[uei].size() == 2 && "edge should have 2 incident faces");
|
|
|
+ const Index f1 = uE2E[uei][0]%num_faces;
|
|
|
+ const Index f2 = uE2E[uei][1]%num_faces;
|
|
|
+ const Index c1 = uE2E[uei][0]/num_faces;
|
|
|
+ const Index c2 = uE2E[uei][1]/num_faces;
|
|
|
+ assert(c1 < 3);
|
|
|
+ assert(c2 < 3);
|
|
|
+ assert(f1 != f2);
|
|
|
+ const Index v1 = F(f1, (c1+1)%3);
|
|
|
+ const Index v2 = F(f1, (c1+2)%3);
|
|
|
+ const Index v4 = F(f1, c1);
|
|
|
+ const Index v3 = F(f2, c2);
|
|
|
+ assert(F(f2, (c2+2)%3) == v1);
|
|
|
+ assert(F(f2, (c2+1)%3) == v2);
|
|
|
+ // From gptoolbox/mesh/flip_edge.m
|
|
|
+ // "If edge-after-flip already exists then this will create a non-manifold
|
|
|
+ // edge"
|
|
|
+ // Yes, this can happen: e.g., an edge of a tetrahedron."
|
|
|
+ // "If two edges will be the same edge after flip then this will create a
|
|
|
+ // non-manifold edge."
|
|
|
+ // I dont' think this can happen if we flip one at a time. gptoolbox
|
|
|
+ // flips in parallel.
|
|
|
+ //
|
|
|
+ // Does edge (a,b) exist in the edges of all faces incident on
|
|
|
+ // existing unique edge uei.
|
|
|
+ //
|
|
|
+ // Inputs:
|
|
|
+ // a 1st end-point of query edge
|
|
|
+ // b 2nd end-point of query edge
|
|
|
+ // uei index into uE/uE2E of unique edge
|
|
|
+ // uE2E map from unique edges to half-edges (see unique_edge_map)
|
|
|
+ // E #F*3 by 2 list of half-edges
|
|
|
+ //
|
|
|
+ const auto edge_exists_near =
|
|
|
+ [&](const Index & a,const Index & b,const Index & uei)->bool
|
|
|
+ {
|
|
|
+ assert(a!=b);
|
|
|
+ // Not handling case where (a,b) is edge of face incident on uei
|
|
|
+ // since this can't happen for edge-flipping.
|
|
|
+ assert(a!=uE(uei,0));
|
|
|
+ assert(a!=uE(uei,1));
|
|
|
+ assert(b!=uE(uei,0));
|
|
|
+ assert(b!=uE(uei,1));
|
|
|
+ // starting with the (2) faces incident on e, consider all faces
|
|
|
+ // incident on edges containing either a or b.
|
|
|
+ //
|
|
|
+ // face_queue Queue containing faces incident on exactly one of a/b
|
|
|
+ std::queue<Index> face_queue;
|
|
|
+ const Index f1 = uE2E[uei][0]%num_faces;
|
|
|
+ const Index f2 = uE2E[uei][1]%num_faces;
|
|
|
+ std::map<Index,bool> pushed;
|
|
|
+ face_queue.push(f1);
|
|
|
+ pushed[f1] = true;
|
|
|
+ face_queue.push(f2);
|
|
|
+ pushed[f2] = true;
|
|
|
+ while(!face_queue.empty())
|
|
|
+ {
|
|
|
+ const Index f = face_queue.front();
|
|
|
+ face_queue.pop();
|
|
|
+ pushed[f] = true;
|
|
|
+ // consider each edge of this face
|
|
|
+ for(int c = 0;c<3;c++)
|
|
|
+ {
|
|
|
+ // Unique edge id
|
|
|
+ const Index uec = EMAP(c*num_faces+f);
|
|
|
+ const Index s = uE(uec,0);
|
|
|
+ const Index d = uE(uec,1);
|
|
|
+ const bool ona = s == a || d == a;
|
|
|
+ const bool onb = s == b || d == b;
|
|
|
+ // Is this the edge we're looking for?
|
|
|
+ if(ona && onb)
|
|
|
+ {
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+ // not incident on either?
|
|
|
+ if(!ona && !onb)
|
|
|
+ {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ // loop over all incident half-edges
|
|
|
+ for(const auto & he : uE2E[uec])
|
|
|
+ {
|
|
|
+ // face of this he
|
|
|
+ const Index fhe = he%num_faces;
|
|
|
+ if(!pushed[fhe])
|
|
|
+ {
|
|
|
+ pushed[fhe] = true;
|
|
|
+ face_queue.push(fhe);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return false;
|
|
|
+ };
|
|
|
+
|
|
|
+ bool flippable = !edge_exists_near(v3,v4,uei);
|
|
|
+ if(flippable)
|
|
|
+ {
|
|
|
+ all_delaunay = false;
|
|
|
+
|
|
|
+ assert( std::abs(l(f1,c1)-l(f2,c2)) < igl::EPS<Scalar>() );
|
|
|
+ const Scalar e = l(f1,c1);
|
|
|
+ const Scalar a = l(f1,(c1+1)%3);
|
|
|
+ const Scalar b = l(f1,(c1+2)%3);
|
|
|
+ const Scalar c = l(f2,(c2+1)%3);
|
|
|
+ const Scalar d = l(f2,(c2+2)%3);
|
|
|
+ // tan(α/2)
|
|
|
+ const Scalar tan_a_2= tan_half_angle(a,b,e);
|
|
|
+ // tan(δ/2)
|
|
|
+ const Scalar tan_d_2 = tan_half_angle(d,e,c);
|
|
|
+ // tan((α+δ)/2)
|
|
|
+ const Scalar tan_a_d_2 = (tan_a_2 + tan_d_2)/(1.0-tan_a_2*tan_d_2);
|
|
|
+ // cos(α+δ)
|
|
|
+ const Scalar cos_a_d =
|
|
|
+ (1.0 - tan_a_d_2*tan_a_d_2)/(1.0+tan_a_d_2*tan_a_d_2);
|
|
|
+ const Scalar f = sqrt(b*b + c*c - 2.0*b*c*cos_a_d);
|
|
|
+ l(f1,0) = f;
|
|
|
+ l(f1,1) = b;
|
|
|
+ l(f1,2) = c;
|
|
|
+ l(f2,0) = f;
|
|
|
+ l(f2,1) = d;
|
|
|
+ l(f2,2) = a;
|
|
|
+ flip_edge(F, E, uE, EMAP, uE2E, uei);
|
|
|
+ }
|
|
|
}
|
|
|
}
|
|
|
}
|