|
@@ -60,107 +60,6 @@ void compute_surface_gradient_matrix(const Eigen::MatrixXd& V, const Eigen::Matr
|
|
D2 = F2.col(0).asDiagonal()*Dx + F2.col(1).asDiagonal()*Dy + F2.col(2).asDiagonal()*Dz;
|
|
D2 = F2.col(0).asDiagonal()*Dx + F2.col(1).asDiagonal()*Dy + F2.col(2).asDiagonal()*Dz;
|
|
}
|
|
}
|
|
|
|
|
|
-void compute_tet_grad_matrix(const Eigen::MatrixXd& V, const Eigen::MatrixXi& T,
|
|
|
|
- Eigen::SparseMatrix<double>& Dx, Eigen::SparseMatrix<double>& Dy, Eigen::SparseMatrix<double>& Dz, bool uniform) {
|
|
|
|
- using namespace Eigen;
|
|
|
|
- assert(T.cols() == 4);
|
|
|
|
- const int n = V.rows(); int m = T.rows();
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- F = [ ...
|
|
|
|
- T(:,1) T(:,2) T(:,3); ...
|
|
|
|
- T(:,1) T(:,3) T(:,4); ...
|
|
|
|
- T(:,1) T(:,4) T(:,2); ...
|
|
|
|
- T(:,2) T(:,4) T(:,3)]; */
|
|
|
|
- MatrixXi F(4*m,3);
|
|
|
|
- for (int i = 0; i < m; i++) {
|
|
|
|
- F.row(0*m + i) << T(i,0), T(i,1), T(i,2);
|
|
|
|
- F.row(1*m + i) << T(i,0), T(i,2), T(i,3);
|
|
|
|
- F.row(2*m + i) << T(i,0), T(i,3), T(i,1);
|
|
|
|
- F.row(3*m + i) << T(i,1), T(i,3), T(i,2);
|
|
|
|
- }
|
|
|
|
- // compute volume of each tet
|
|
|
|
- VectorXd vol; igl::volume(V,T,vol);
|
|
|
|
-
|
|
|
|
- VectorXd A(F.rows());
|
|
|
|
- MatrixXd N(F.rows(),3);
|
|
|
|
- if (!uniform) {
|
|
|
|
- // compute tetrahedron face normals
|
|
|
|
- igl::per_face_normals(V,F,N); int norm_rows = N.rows();
|
|
|
|
- for (int i = 0; i < norm_rows; i++)
|
|
|
|
- N.row(i) /= N.row(i).norm();
|
|
|
|
- igl::doublearea(V,F,A); A/=2.;
|
|
|
|
- } else {
|
|
|
|
- // Use a uniform tetrahedra as a reference:
|
|
|
|
- // V = h*[0,0,0;1,0,0;0.5,sqrt(3)/2.,0;0.5,sqrt(3)/6.,sqrt(2)/sqrt(3)]
|
|
|
|
- //
|
|
|
|
- // With normals
|
|
|
|
- // 0 0 1.0000
|
|
|
|
- // 0.8165 -0.4714 -0.3333
|
|
|
|
- // 0 0.9428 -0.3333
|
|
|
|
- // -0.8165 -0.4714 -0.3333
|
|
|
|
- for (int i = 0; i < m; i++) {
|
|
|
|
- N.row(0*m+i) << 0,0,1;
|
|
|
|
- double a = sqrt(2)*std::cbrt(3*vol(i));
|
|
|
|
- A(0*m+i) = (pow(a,2)*sqrt(3))/4.;
|
|
|
|
- }
|
|
|
|
- for (int i = 0; i < m; i++) {
|
|
|
|
- N.row(1*m+i) << 0.8165,-0.4714,-0.3333;
|
|
|
|
- double a = sqrt(2)*std::cbrt(3*vol(i));
|
|
|
|
- A(1*m+i) = (pow(a,2)*sqrt(3))/4.;
|
|
|
|
- }
|
|
|
|
- for (int i = 0; i < m; i++) {
|
|
|
|
- N.row(2*m+i) << 0,0.9428,-0.3333;
|
|
|
|
- double a = sqrt(2)*std::cbrt(3*vol(i));
|
|
|
|
- A(2*m+i) = (pow(a,2)*sqrt(3))/4.;
|
|
|
|
- }
|
|
|
|
- for (int i = 0; i < m; i++) {
|
|
|
|
- N.row(3*m+i) << -0.8165,-0.4714,-0.3333;
|
|
|
|
- double a = sqrt(2)*std::cbrt(3*vol(i));
|
|
|
|
- A(3*m+i) = (pow(a,2)*sqrt(3))/4.;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /* G = sparse( ...
|
|
|
|
- [0*m + repmat(1:m,1,4) ...
|
|
|
|
- 1*m + repmat(1:m,1,4) ...
|
|
|
|
- 2*m + repmat(1:m,1,4)], ...
|
|
|
|
- repmat([T(:,4);T(:,2);T(:,3);T(:,1)],3,1), ...
|
|
|
|
- repmat(A./(3*repmat(vol,4,1)),3,1).*N(:), ...
|
|
|
|
- 3*m,n);*/
|
|
|
|
- std::vector<Triplet<double> > Dx_t,Dy_t,Dz_t;
|
|
|
|
- for (int i = 0; i < 4*m; i++) {
|
|
|
|
- int T_j; // j indexes : repmat([T(:,4);T(:,2);T(:,3);T(:,1)],3,1)
|
|
|
|
- switch (i/m) {
|
|
|
|
- case 0:
|
|
|
|
- T_j = 3;
|
|
|
|
- break;
|
|
|
|
- case 1:
|
|
|
|
- T_j = 1;
|
|
|
|
- break;
|
|
|
|
- case 2:
|
|
|
|
- T_j = 2;
|
|
|
|
- break;
|
|
|
|
- case 3:
|
|
|
|
- T_j = 0;
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- int i_idx = i%m;
|
|
|
|
- int j_idx = T(i_idx,T_j);
|
|
|
|
-
|
|
|
|
- double val_before_n = A(i)/(3*vol(i_idx));
|
|
|
|
- Dx_t.push_back(Triplet<double>(i_idx, j_idx, val_before_n * N(i,0)));
|
|
|
|
- Dy_t.push_back(Triplet<double>(i_idx, j_idx, val_before_n * N(i,1)));
|
|
|
|
- Dz_t.push_back(Triplet<double>(i_idx, j_idx, val_before_n * N(i,2)));
|
|
|
|
- }
|
|
|
|
- Dx.resize(m,n); Dy.resize(m,n); Dz.resize(m,n);
|
|
|
|
- Dx.setFromTriplets(Dx_t.begin(), Dx_t.end());
|
|
|
|
- Dy.setFromTriplets(Dy_t.begin(), Dy_t.end());
|
|
|
|
- Dz.setFromTriplets(Dz_t.begin(), Dz_t.end());
|
|
|
|
-
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
// Computes the weights and solve the linear system for the quadratic proxy specified in the paper
|
|
// Computes the weights and solve the linear system for the quadratic proxy specified in the paper
|
|
// The output of this is used to generate a search direction that will be fed to the Linesearch class
|
|
// The output of this is used to generate a search direction that will be fed to the Linesearch class
|
|
class WeightedGlobalLocal {
|
|
class WeightedGlobalLocal {
|
|
@@ -484,8 +383,12 @@ void WeightedGlobalLocal::pre_calc() {
|
|
W_11.resize(f_n); W_12.resize(f_n); W_21.resize(f_n); W_22.resize(f_n);
|
|
W_11.resize(f_n); W_12.resize(f_n); W_21.resize(f_n); W_22.resize(f_n);
|
|
} else {
|
|
} else {
|
|
dim = 3;
|
|
dim = 3;
|
|
- compute_tet_grad_matrix(m_state.V,m_state.F,Dx,Dy,Dz,
|
|
|
|
- m_state.mesh_improvement_3d /*use normal gradient, or one from a "regular" tet*/);
|
|
|
|
|
|
+ Eigen::SparseMatrix<double> G;
|
|
|
|
+ igl::grad(m_state.V,m_state.F,G,m_state.mesh_improvement_3d /*use normal gradient, or one from a "regular" tet*/);
|
|
|
|
+ Dx = G.block(0,0,m_state.F.rows(),m_state.V.rows());
|
|
|
|
+ Dy = G.block(m_state.F.rows(),0,m_state.F.rows(),m_state.V.rows());
|
|
|
|
+ Dz = G.block(2*m_state.F.rows(),0,m_state.F.rows(),m_state.V.rows());
|
|
|
|
+
|
|
|
|
|
|
W_11.resize(f_n);W_12.resize(f_n);W_13.resize(f_n);
|
|
W_11.resize(f_n);W_12.resize(f_n);W_13.resize(f_n);
|
|
W_21.resize(f_n);W_22.resize(f_n);W_23.resize(f_n);
|
|
W_21.resize(f_n);W_22.resize(f_n);W_23.resize(f_n);
|