|
@@ -0,0 +1,129 @@
|
|
|
|
+// This file is part of libigl, a simple c++ geometry processing library.
|
|
|
|
+//
|
|
|
|
+// Copyright (C) 2016 Alec Jacobson <alecjacobson@gmail.com>
|
|
|
|
+// Qingan Zhou <qnzhou@gmail.com>
|
|
|
|
+//
|
|
|
|
+// This Source Code Form is subject to the terms of the Mozilla Public License
|
|
|
|
+// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
|
|
|
+// obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
+
|
|
|
|
+#include "lexicographic_triangulation.h"
|
|
|
|
+#include "ExactPredicate.h"
|
|
|
|
+#include "../../sortrows.h"
|
|
|
|
+
|
|
|
|
+#include <vector>
|
|
|
|
+
|
|
|
|
+template<
|
|
|
|
+ typename DerivedP,
|
|
|
|
+ typename DerivedF
|
|
|
|
+ >
|
|
|
|
+IGL_INLINE void igl::copyleft::cgal::lexicographic_triangulation(
|
|
|
|
+ const Eigen::PlainObjectBase<DerivedP>& P,
|
|
|
|
+ Eigen::PlainObjectBase<DerivedF>& F)
|
|
|
|
+{
|
|
|
|
+ typedef typename DerivedP::Scalar Scalar;
|
|
|
|
+ typedef typename igl::copyleft::cgal::ExactPredicate<Scalar> Predicate;
|
|
|
|
+ const size_t num_pts = P.rows();
|
|
|
|
+ if (num_pts < 3) {
|
|
|
|
+ throw "At least 3 points are required for triangulation!";
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // Sort points in lexicographic order.
|
|
|
|
+ DerivedP ordered_P;
|
|
|
|
+ Eigen::VectorXi order;
|
|
|
|
+ igl::sortrows(P, true, ordered_P, order);
|
|
|
|
+
|
|
|
|
+ std::vector<Eigen::Vector3i> faces;
|
|
|
|
+ std::list<size_t> boundary;
|
|
|
|
+ const Scalar p0[] = {ordered_P(0, 0), ordered_P(0, 1)};
|
|
|
|
+ const Scalar p1[] = {ordered_P(1, 0), ordered_P(1, 1)};
|
|
|
|
+ for (size_t i=2; i<num_pts; i++) {
|
|
|
|
+ const Scalar curr_p[] = {ordered_P(i, 0), ordered_P(i, 1)};
|
|
|
|
+ if (faces.size() == 0) {
|
|
|
|
+ // All points processed so far are collinear.
|
|
|
|
+ // Check if the current point is collinear with every points before it.
|
|
|
|
+ auto orientation = Predicate::orientation(p0, p1, curr_p);
|
|
|
|
+ if (orientation != 0) {
|
|
|
|
+ // Add a fan of triangles eminating from curr_p.
|
|
|
|
+ if (orientation > 0) {
|
|
|
|
+ for (size_t j=0; j<=i-2; j++) {
|
|
|
|
+ faces.push_back({order[j], order[j+1], order[i]});
|
|
|
|
+ }
|
|
|
|
+ } else if (orientation < 0) {
|
|
|
|
+ for (size_t j=0; j<=i-2; j++) {
|
|
|
|
+ faces.push_back({order[j+1], order[j], order[i]});
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ // Initialize current boundary.
|
|
|
|
+ boundary.insert(boundary.end(), order.data(), order.data()+i+1);
|
|
|
|
+ if (orientation < 0) {
|
|
|
|
+ boundary.reverse();
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ } else {
|
|
|
|
+ const size_t bd_size = boundary.size();
|
|
|
|
+ assert(bd_size >= 3);
|
|
|
|
+ std::vector<short> orientations;
|
|
|
|
+ for (auto itr=boundary.begin(); itr!=boundary.end(); itr++) {
|
|
|
|
+ auto next_itr = std::next(itr, 1);
|
|
|
|
+ if (next_itr == boundary.end()) {
|
|
|
|
+ next_itr = boundary.begin();
|
|
|
|
+ }
|
|
|
|
+ const Scalar bd_p0[] = {P(*itr, 0), P(*itr, 1)};
|
|
|
|
+ const Scalar bd_p1[] = {P(*next_itr, 0), P(*next_itr, 1)};
|
|
|
|
+ auto orientation = Predicate::orientation(bd_p0, bd_p1, curr_p);
|
|
|
|
+ if (orientation < 0) {
|
|
|
|
+ faces.push_back({*next_itr, *itr, order[i]});
|
|
|
|
+ }
|
|
|
|
+ orientations.push_back(orientation);
|
|
|
|
+ std::cout << orientation << " ";
|
|
|
|
+ }
|
|
|
|
+ std::cout << std::endl;
|
|
|
|
+
|
|
|
|
+ auto left_itr = boundary.begin();
|
|
|
|
+ auto right_itr = boundary.begin();
|
|
|
|
+ auto curr_itr = boundary.begin();
|
|
|
|
+ for (size_t j=0; j<bd_size; j++, curr_itr++) {
|
|
|
|
+ size_t prev = (j+bd_size-1) % bd_size;
|
|
|
|
+ if (orientations[j] >= 0 && orientations[prev] < 0) {
|
|
|
|
+ right_itr = curr_itr;
|
|
|
|
+ } else if (orientations[j] < 0 && orientations[prev] >= 0) {
|
|
|
|
+ left_itr = curr_itr;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ assert(left_itr != right_itr);
|
|
|
|
+
|
|
|
|
+ for (auto itr=left_itr; itr!=right_itr; itr++) {
|
|
|
|
+ if (itr == boundary.end()) itr = boundary.begin();
|
|
|
|
+ if (itr == right_itr) break;
|
|
|
|
+ if (itr == left_itr || itr == right_itr) continue;
|
|
|
|
+ itr = boundary.erase(itr);
|
|
|
|
+ if (itr == boundary.begin()) {
|
|
|
|
+ itr = boundary.end();
|
|
|
|
+ } else {
|
|
|
|
+ itr--;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (right_itr == boundary.begin()) {
|
|
|
|
+ assert(std::next(left_itr, 1) == boundary.end());
|
|
|
|
+ boundary.insert(boundary.end(), order[i]);
|
|
|
|
+ } else {
|
|
|
|
+ assert(std::next(left_itr, 1) == right_itr);
|
|
|
|
+ boundary.insert(right_itr, order[i]);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ const size_t num_faces = faces.size();
|
|
|
|
+ if (num_faces == 0) {
|
|
|
|
+ // All input points are collinear.
|
|
|
|
+ // Do nothing here.
|
|
|
|
+ } else {
|
|
|
|
+ F.resize(num_faces, 3);
|
|
|
|
+ for (size_t i=0; i<num_faces; i++) {
|
|
|
|
+ F.row(i) = faces[i];
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|