|
@@ -3,40 +3,11 @@
|
|
|
|
|
|
#include <stdexcept>
|
|
|
|
|
|
-namespace igl
|
|
|
-{
|
|
|
- namespace copyleft
|
|
|
- {
|
|
|
- namespace cgal
|
|
|
- {
|
|
|
- namespace order_facets_around_edges_helper
|
|
|
- {
|
|
|
- template<typename T>
|
|
|
- std::vector<size_t> index_sort(const std::vector<T>& data)
|
|
|
- {
|
|
|
- const size_t len = data.size();
|
|
|
- std::vector<size_t> order(len);
|
|
|
- for (size_t i=0; i<len; i++)
|
|
|
- {
|
|
|
- order[i] = i;
|
|
|
- }
|
|
|
- auto comp = [&](size_t i, size_t j)
|
|
|
- {
|
|
|
- return data[i] < data[j];
|
|
|
- };
|
|
|
- std::sort(order.begin(), order.end(), comp);
|
|
|
- return order;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
// adj_faces contains signed index starting from +- 1.
|
|
|
template<
|
|
|
- typename DerivedV,
|
|
|
- typename DerivedF,
|
|
|
- typename DerivedI >
|
|
|
+ typename DerivedV,
|
|
|
+ typename DerivedF,
|
|
|
+ typename DerivedI >
|
|
|
void igl::copyleft::cgal::order_facets_around_edge(
|
|
|
const Eigen::PlainObjectBase<DerivedV>& V,
|
|
|
const Eigen::PlainObjectBase<DerivedF>& F,
|
|
@@ -45,254 +16,261 @@ void igl::copyleft::cgal::order_facets_around_edge(
|
|
|
const std::vector<int>& adj_faces,
|
|
|
Eigen::PlainObjectBase<DerivedI>& order, bool debug)
|
|
|
{
|
|
|
- using namespace igl::copyleft::cgal::order_facets_around_edges_helper;
|
|
|
-
|
|
|
- // Although we only need exact predicates in the algorithm,
|
|
|
- // exact constructions are needed to avoid degeneracies due to
|
|
|
- // casting to double.
|
|
|
- typedef CGAL::Exact_predicates_exact_constructions_kernel K;
|
|
|
- typedef K::Point_3 Point_3;
|
|
|
- typedef K::Plane_3 Plane_3;
|
|
|
-
|
|
|
- auto get_face_index = [&](int adj_f)->size_t
|
|
|
- {
|
|
|
- return abs(adj_f) - 1;
|
|
|
- };
|
|
|
-
|
|
|
- auto get_opposite_vertex = [&](size_t fid)->size_t
|
|
|
- {
|
|
|
- typedef typename DerivedF::Scalar Index;
|
|
|
- if (F(fid, 0) != (Index)s && F(fid, 0) != (Index)d) return F(fid, 0);
|
|
|
- if (F(fid, 1) != (Index)s && F(fid, 1) != (Index)d) return F(fid, 1);
|
|
|
- if (F(fid, 2) != (Index)s && F(fid, 2) != (Index)d) return F(fid, 2);
|
|
|
- assert(false);
|
|
|
- return -1;
|
|
|
- };
|
|
|
+ // Although we only need exact predicates in the algorithm,
|
|
|
+ // exact constructions are needed to avoid degeneracies due to
|
|
|
+ // casting to double.
|
|
|
+ typedef CGAL::Exact_predicates_exact_constructions_kernel K;
|
|
|
+ typedef K::Point_3 Point_3;
|
|
|
+ typedef K::Plane_3 Plane_3;
|
|
|
+
|
|
|
+ auto get_face_index = [&](int adj_f)->size_t
|
|
|
+ {
|
|
|
+ return abs(adj_f) - 1;
|
|
|
+ };
|
|
|
|
|
|
- // Handle base cases
|
|
|
- if (adj_faces.size() == 0)
|
|
|
- {
|
|
|
- order.resize(0, 1);
|
|
|
- return;
|
|
|
- } else if (adj_faces.size() == 1)
|
|
|
+ auto get_opposite_vertex = [&](size_t fid)->size_t
|
|
|
+ {
|
|
|
+ typedef typename DerivedF::Scalar Index;
|
|
|
+ if (F(fid, 0) != (Index)s && F(fid, 0) != (Index)d) return F(fid, 0);
|
|
|
+ if (F(fid, 1) != (Index)s && F(fid, 1) != (Index)d) return F(fid, 1);
|
|
|
+ if (F(fid, 2) != (Index)s && F(fid, 2) != (Index)d) return F(fid, 2);
|
|
|
+ assert(false);
|
|
|
+ return -1;
|
|
|
+ };
|
|
|
+
|
|
|
+ // Handle base cases
|
|
|
+ if (adj_faces.size() == 0)
|
|
|
+ {
|
|
|
+ order.resize(0, 1);
|
|
|
+ return;
|
|
|
+ } else if (adj_faces.size() == 1)
|
|
|
+ {
|
|
|
+ order.resize(1, 1);
|
|
|
+ order(0, 0) = 0;
|
|
|
+ return;
|
|
|
+ } else if (adj_faces.size() == 2)
|
|
|
+ {
|
|
|
+ const size_t o1 = get_opposite_vertex(get_face_index(adj_faces[0]));
|
|
|
+ const size_t o2 = get_opposite_vertex(get_face_index(adj_faces[1]));
|
|
|
+ const Point_3 ps(V(s, 0), V(s, 1), V(s, 2));
|
|
|
+ const Point_3 pd(V(d, 0), V(d, 1), V(d, 2));
|
|
|
+ const Point_3 p1(V(o1, 0), V(o1, 1), V(o1, 2));
|
|
|
+ const Point_3 p2(V(o2, 0), V(o2, 1), V(o2, 2));
|
|
|
+ order.resize(2, 1);
|
|
|
+ switch (CGAL::orientation(ps, pd, p1, p2))
|
|
|
{
|
|
|
- order.resize(1, 1);
|
|
|
+ case CGAL::POSITIVE:
|
|
|
+ order(0, 0) = 1;
|
|
|
+ order(1, 0) = 0;
|
|
|
+ break;
|
|
|
+ case CGAL::NEGATIVE:
|
|
|
order(0, 0) = 0;
|
|
|
- return;
|
|
|
- } else if (adj_faces.size() == 2)
|
|
|
- {
|
|
|
- const size_t o1 = get_opposite_vertex(get_face_index(adj_faces[0]));
|
|
|
- const size_t o2 = get_opposite_vertex(get_face_index(adj_faces[1]));
|
|
|
- const Point_3 ps(V(s, 0), V(s, 1), V(s, 2));
|
|
|
- const Point_3 pd(V(d, 0), V(d, 1), V(d, 2));
|
|
|
- const Point_3 p1(V(o1, 0), V(o1, 1), V(o1, 2));
|
|
|
- const Point_3 p2(V(o2, 0), V(o2, 1), V(o2, 2));
|
|
|
- order.resize(2, 1);
|
|
|
- switch (CGAL::orientation(ps, pd, p1, p2))
|
|
|
+ order(1, 0) = 1;
|
|
|
+ break;
|
|
|
+ case CGAL::COPLANAR:
|
|
|
{
|
|
|
+ switch (CGAL::coplanar_orientation(ps, pd, p1, p2)) {
|
|
|
case CGAL::POSITIVE:
|
|
|
- order(0, 0) = 1;
|
|
|
- order(1, 0) = 0;
|
|
|
- break;
|
|
|
+ // Duplicated face, use index to break tie.
|
|
|
+ order(0, 0) = adj_faces[0] < adj_faces[1] ? 0:1;
|
|
|
+ order(1, 0) = adj_faces[0] < adj_faces[1] ? 1:0;
|
|
|
+ break;
|
|
|
case CGAL::NEGATIVE:
|
|
|
- order(0, 0) = 0;
|
|
|
- order(1, 0) = 1;
|
|
|
- break;
|
|
|
- case CGAL::COPLANAR:
|
|
|
- {
|
|
|
- switch (CGAL::coplanar_orientation(ps, pd, p1, p2)) {
|
|
|
- case CGAL::POSITIVE:
|
|
|
- // Duplicated face, use index to break tie.
|
|
|
- order(0, 0) = adj_faces[0] < adj_faces[1] ? 0:1;
|
|
|
- order(1, 0) = adj_faces[0] < adj_faces[1] ? 1:0;
|
|
|
- break;
|
|
|
- case CGAL::NEGATIVE:
|
|
|
- // Coplanar faces, one on each side of the edge.
|
|
|
- // It is equally valid to order them (0, 1) or (1, 0).
|
|
|
- // I cannot think of any reason to prefer one to the
|
|
|
- // other. So just use (0, 1) ordering by default.
|
|
|
- order(0, 0) = 0;
|
|
|
- order(1, 0) = 1;
|
|
|
- break;
|
|
|
- case CGAL::COLLINEAR:
|
|
|
- std::cerr << "Degenerated triangle detected." <<
|
|
|
- std::endl;
|
|
|
- assert(false);
|
|
|
- break;
|
|
|
- default:
|
|
|
- assert(false);
|
|
|
- }
|
|
|
- }
|
|
|
- break;
|
|
|
+ // Coplanar faces, one on each side of the edge.
|
|
|
+ // It is equally valid to order them (0, 1) or (1, 0).
|
|
|
+ // I cannot think of any reason to prefer one to the
|
|
|
+ // other. So just use (0, 1) ordering by default.
|
|
|
+ order(0, 0) = 0;
|
|
|
+ order(1, 0) = 1;
|
|
|
+ break;
|
|
|
+ case CGAL::COLLINEAR:
|
|
|
+ std::cerr << "Degenerated triangle detected." <<
|
|
|
+ std::endl;
|
|
|
+ assert(false);
|
|
|
+ break;
|
|
|
default:
|
|
|
- assert(false);
|
|
|
+ assert(false);
|
|
|
+ }
|
|
|
}
|
|
|
- return;
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ assert(false);
|
|
|
}
|
|
|
+ return;
|
|
|
+ }
|
|
|
|
|
|
- const size_t num_adj_faces = adj_faces.size();
|
|
|
- const size_t o = get_opposite_vertex( get_face_index(adj_faces[0]));
|
|
|
- const Point_3 p_s(V(s, 0), V(s, 1), V(s, 2));
|
|
|
- const Point_3 p_d(V(d, 0), V(d, 1), V(d, 2));
|
|
|
- const Point_3 p_o(V(o, 0), V(o, 1), V(o, 2));
|
|
|
- const Plane_3 separator(p_s, p_d, p_o);
|
|
|
- if (separator.is_degenerate()) {
|
|
|
- throw std::runtime_error(
|
|
|
- "Cannot order facets around edge due to degenerated facets");
|
|
|
- }
|
|
|
+ const size_t num_adj_faces = adj_faces.size();
|
|
|
+ const size_t o = get_opposite_vertex( get_face_index(adj_faces[0]));
|
|
|
+ const Point_3 p_s(V(s, 0), V(s, 1), V(s, 2));
|
|
|
+ const Point_3 p_d(V(d, 0), V(d, 1), V(d, 2));
|
|
|
+ const Point_3 p_o(V(o, 0), V(o, 1), V(o, 2));
|
|
|
+ const Plane_3 separator(p_s, p_d, p_o);
|
|
|
+ if (separator.is_degenerate()) {
|
|
|
+ throw std::runtime_error(
|
|
|
+ "Cannot order facets around edge due to degenerated facets");
|
|
|
+ }
|
|
|
|
|
|
- std::vector<Point_3> opposite_vertices;
|
|
|
- for (size_t i=0; i<num_adj_faces; i++)
|
|
|
- {
|
|
|
- const size_t o = get_opposite_vertex( get_face_index(adj_faces[i]));
|
|
|
- opposite_vertices.emplace_back(
|
|
|
- V(o, 0), V(o, 1), V(o, 2));
|
|
|
- }
|
|
|
+ std::vector<Point_3> opposite_vertices;
|
|
|
+ for (size_t i=0; i<num_adj_faces; i++)
|
|
|
+ {
|
|
|
+ const size_t o = get_opposite_vertex( get_face_index(adj_faces[i]));
|
|
|
+ opposite_vertices.emplace_back(
|
|
|
+ V(o, 0), V(o, 1), V(o, 2));
|
|
|
+ }
|
|
|
|
|
|
- std::vector<int> positive_side;
|
|
|
- std::vector<int> negative_side;
|
|
|
- std::vector<int> tie_positive_oriented;
|
|
|
- std::vector<int> tie_negative_oriented;
|
|
|
+ std::vector<int> positive_side;
|
|
|
+ std::vector<int> negative_side;
|
|
|
+ std::vector<int> tie_positive_oriented;
|
|
|
+ std::vector<int> tie_negative_oriented;
|
|
|
|
|
|
- std::vector<size_t> positive_side_index;
|
|
|
- std::vector<size_t> negative_side_index;
|
|
|
- std::vector<size_t> tie_positive_oriented_index;
|
|
|
- std::vector<size_t> tie_negative_oriented_index;
|
|
|
+ std::vector<size_t> positive_side_index;
|
|
|
+ std::vector<size_t> negative_side_index;
|
|
|
+ std::vector<size_t> tie_positive_oriented_index;
|
|
|
+ std::vector<size_t> tie_negative_oriented_index;
|
|
|
|
|
|
- for (size_t i=0; i<num_adj_faces; i++)
|
|
|
- {
|
|
|
- const int f = adj_faces[i];
|
|
|
- const Point_3& p_a = opposite_vertices[i];
|
|
|
- auto orientation = separator.oriented_side(p_a);
|
|
|
- switch (orientation) {
|
|
|
- case CGAL::ON_POSITIVE_SIDE:
|
|
|
- positive_side.push_back(f);
|
|
|
- positive_side_index.push_back(i);
|
|
|
- break;
|
|
|
- case CGAL::ON_NEGATIVE_SIDE:
|
|
|
- negative_side.push_back(f);
|
|
|
- negative_side_index.push_back(i);
|
|
|
- break;
|
|
|
- case CGAL::ON_ORIENTED_BOUNDARY:
|
|
|
- {
|
|
|
- auto inplane_orientation = CGAL::coplanar_orientation(
|
|
|
- p_s, p_d, p_o, p_a);
|
|
|
- switch (inplane_orientation) {
|
|
|
- case CGAL::POSITIVE:
|
|
|
- tie_positive_oriented.push_back(f);
|
|
|
- tie_positive_oriented_index.push_back(i);
|
|
|
- break;
|
|
|
- case CGAL::NEGATIVE:
|
|
|
- tie_negative_oriented.push_back(f);
|
|
|
- tie_negative_oriented_index.push_back(i);
|
|
|
- break;
|
|
|
- case CGAL::COLLINEAR:
|
|
|
- default:
|
|
|
- throw std::runtime_error(
|
|
|
- "Degenerated facet detected.");
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
- break;
|
|
|
+ for (size_t i=0; i<num_adj_faces; i++)
|
|
|
+ {
|
|
|
+ const int f = adj_faces[i];
|
|
|
+ const Point_3& p_a = opposite_vertices[i];
|
|
|
+ auto orientation = separator.oriented_side(p_a);
|
|
|
+ switch (orientation) {
|
|
|
+ case CGAL::ON_POSITIVE_SIDE:
|
|
|
+ positive_side.push_back(f);
|
|
|
+ positive_side_index.push_back(i);
|
|
|
+ break;
|
|
|
+ case CGAL::ON_NEGATIVE_SIDE:
|
|
|
+ negative_side.push_back(f);
|
|
|
+ negative_side_index.push_back(i);
|
|
|
+ break;
|
|
|
+ case CGAL::ON_ORIENTED_BOUNDARY:
|
|
|
+ {
|
|
|
+ auto inplane_orientation = CGAL::coplanar_orientation(
|
|
|
+ p_s, p_d, p_o, p_a);
|
|
|
+ switch (inplane_orientation) {
|
|
|
+ case CGAL::POSITIVE:
|
|
|
+ tie_positive_oriented.push_back(f);
|
|
|
+ tie_positive_oriented_index.push_back(i);
|
|
|
+ break;
|
|
|
+ case CGAL::NEGATIVE:
|
|
|
+ tie_negative_oriented.push_back(f);
|
|
|
+ tie_negative_oriented_index.push_back(i);
|
|
|
+ break;
|
|
|
+ case CGAL::COLLINEAR:
|
|
|
default:
|
|
|
- // Should not be here.
|
|
|
- throw std::runtime_error("Unknown CGAL state detected.");
|
|
|
+ throw std::runtime_error(
|
|
|
+ "Degenerated facet detected.");
|
|
|
+ break;
|
|
|
+ }
|
|
|
}
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ // Should not be here.
|
|
|
+ throw std::runtime_error("Unknown CGAL state detected.");
|
|
|
}
|
|
|
- if (debug) {
|
|
|
- std::cout << "tie positive: " << std::endl;
|
|
|
- for (auto& f : tie_positive_oriented) {
|
|
|
- std::cout << get_face_index(f) << " ";
|
|
|
- }
|
|
|
- std::cout << std::endl;
|
|
|
- std::cout << "positive side: " << std::endl;
|
|
|
- for (auto& f : positive_side) {
|
|
|
- std::cout << get_face_index(f) << " ";
|
|
|
- }
|
|
|
- std::cout << std::endl;
|
|
|
- std::cout << "tie negative: " << std::endl;
|
|
|
- for (auto& f : tie_negative_oriented) {
|
|
|
- std::cout << get_face_index(f) << " ";
|
|
|
- }
|
|
|
- std::cout << std::endl;
|
|
|
- std::cout << "negative side: " << std::endl;
|
|
|
- for (auto& f : negative_side) {
|
|
|
- std::cout << get_face_index(f) << " ";
|
|
|
- }
|
|
|
- std::cout << std::endl;
|
|
|
+ }
|
|
|
+ if (debug) {
|
|
|
+ std::cout << "tie positive: " << std::endl;
|
|
|
+ for (auto& f : tie_positive_oriented) {
|
|
|
+ std::cout << get_face_index(f) << " ";
|
|
|
}
|
|
|
+ std::cout << std::endl;
|
|
|
+ std::cout << "positive side: " << std::endl;
|
|
|
+ for (auto& f : positive_side) {
|
|
|
+ std::cout << get_face_index(f) << " ";
|
|
|
+ }
|
|
|
+ std::cout << std::endl;
|
|
|
+ std::cout << "tie negative: " << std::endl;
|
|
|
+ for (auto& f : tie_negative_oriented) {
|
|
|
+ std::cout << get_face_index(f) << " ";
|
|
|
+ }
|
|
|
+ std::cout << std::endl;
|
|
|
+ std::cout << "negative side: " << std::endl;
|
|
|
+ for (auto& f : negative_side) {
|
|
|
+ std::cout << get_face_index(f) << " ";
|
|
|
+ }
|
|
|
+ std::cout << std::endl;
|
|
|
+ }
|
|
|
|
|
|
- Eigen::PlainObjectBase<DerivedI> positive_order, negative_order;
|
|
|
- order_facets_around_edge(V, F, s, d, positive_side, positive_order, debug);
|
|
|
- order_facets_around_edge(V, F, s, d, negative_side, negative_order, debug);
|
|
|
- std::vector<size_t> tie_positive_order = index_sort(tie_positive_oriented);
|
|
|
- std::vector<size_t> tie_negative_order = index_sort(tie_negative_oriented);
|
|
|
-
|
|
|
- // Copy results into order vector.
|
|
|
- const size_t tie_positive_size = tie_positive_oriented.size();
|
|
|
- const size_t tie_negative_size = tie_negative_oriented.size();
|
|
|
- const size_t positive_size = positive_order.size();
|
|
|
- const size_t negative_size = negative_order.size();
|
|
|
-
|
|
|
- order.resize(
|
|
|
+ auto index_sort = [](std::vector<int>& data) -> std::vector<size_t>{
|
|
|
+ const size_t len = data.size();
|
|
|
+ std::vector<size_t> order(len);
|
|
|
+ for (size_t i=0; i<len; i++) { order[i] = i; }
|
|
|
+ auto comp = [&](size_t i, size_t j) { return data[i] < data[j]; };
|
|
|
+ std::sort(order.begin(), order.end(), comp);
|
|
|
+ return order;
|
|
|
+ };
|
|
|
+
|
|
|
+ Eigen::PlainObjectBase<DerivedI> positive_order, negative_order;
|
|
|
+ order_facets_around_edge(V, F, s, d, positive_side, positive_order, debug);
|
|
|
+ order_facets_around_edge(V, F, s, d, negative_side, negative_order, debug);
|
|
|
+ std::vector<size_t> tie_positive_order = index_sort(tie_positive_oriented);
|
|
|
+ std::vector<size_t> tie_negative_order = index_sort(tie_negative_oriented);
|
|
|
+
|
|
|
+ // Copy results into order vector.
|
|
|
+ const size_t tie_positive_size = tie_positive_oriented.size();
|
|
|
+ const size_t tie_negative_size = tie_negative_oriented.size();
|
|
|
+ const size_t positive_size = positive_order.size();
|
|
|
+ const size_t negative_size = negative_order.size();
|
|
|
+
|
|
|
+ order.resize(
|
|
|
tie_positive_size + positive_size + tie_negative_size + negative_size,1);
|
|
|
|
|
|
- size_t count=0;
|
|
|
- for (size_t i=0; i<tie_positive_size; i++)
|
|
|
- {
|
|
|
- order(count+i, 0) = tie_positive_oriented_index[tie_positive_order[i]];
|
|
|
- }
|
|
|
- count += tie_positive_size;
|
|
|
+ size_t count=0;
|
|
|
+ for (size_t i=0; i<tie_positive_size; i++)
|
|
|
+ {
|
|
|
+ order(count+i, 0) = tie_positive_oriented_index[tie_positive_order[i]];
|
|
|
+ }
|
|
|
+ count += tie_positive_size;
|
|
|
|
|
|
- for (size_t i=0; i<negative_size; i++)
|
|
|
- {
|
|
|
- order(count+i, 0) = negative_side_index[negative_order(i, 0)];
|
|
|
- }
|
|
|
- count += negative_size;
|
|
|
+ for (size_t i=0; i<negative_size; i++)
|
|
|
+ {
|
|
|
+ order(count+i, 0) = negative_side_index[negative_order(i, 0)];
|
|
|
+ }
|
|
|
+ count += negative_size;
|
|
|
|
|
|
- for (size_t i=0; i<tie_negative_size; i++)
|
|
|
- {
|
|
|
- order(count+i, 0) = tie_negative_oriented_index[tie_negative_order[i]];
|
|
|
- }
|
|
|
- count += tie_negative_size;
|
|
|
+ for (size_t i=0; i<tie_negative_size; i++)
|
|
|
+ {
|
|
|
+ order(count+i, 0) = tie_negative_oriented_index[tie_negative_order[i]];
|
|
|
+ }
|
|
|
+ count += tie_negative_size;
|
|
|
|
|
|
- for (size_t i=0; i<positive_size; i++)
|
|
|
- {
|
|
|
- order(count+i, 0) = positive_side_index[positive_order(i, 0)];
|
|
|
- }
|
|
|
- count += positive_size;
|
|
|
- assert(count == num_adj_faces);
|
|
|
+ for (size_t i=0; i<positive_size; i++)
|
|
|
+ {
|
|
|
+ order(count+i, 0) = positive_side_index[positive_order(i, 0)];
|
|
|
+ }
|
|
|
+ count += positive_size;
|
|
|
+ assert(count == num_adj_faces);
|
|
|
|
|
|
- // Find the correct start point.
|
|
|
- size_t start_idx = 0;
|
|
|
- for (size_t i=0; i<num_adj_faces; i++)
|
|
|
+ // Find the correct start point.
|
|
|
+ size_t start_idx = 0;
|
|
|
+ for (size_t i=0; i<num_adj_faces; i++)
|
|
|
+ {
|
|
|
+ const Point_3& p_a = opposite_vertices[order(i, 0)];
|
|
|
+ const Point_3& p_b =
|
|
|
+ opposite_vertices[order((i+1)%num_adj_faces, 0)];
|
|
|
+ auto orientation = CGAL::orientation(p_s, p_d, p_a, p_b);
|
|
|
+ if (orientation == CGAL::POSITIVE)
|
|
|
{
|
|
|
- const Point_3& p_a = opposite_vertices[order(i, 0)];
|
|
|
- const Point_3& p_b =
|
|
|
- opposite_vertices[order((i+1)%num_adj_faces, 0)];
|
|
|
- auto orientation = CGAL::orientation(p_s, p_d, p_a, p_b);
|
|
|
- if (orientation == CGAL::POSITIVE)
|
|
|
- {
|
|
|
- // Angle between triangle (p_s, p_d, p_a) and (p_s, p_d, p_b) is
|
|
|
- // more than 180 degrees.
|
|
|
- start_idx = (i+1)%num_adj_faces;
|
|
|
- break;
|
|
|
- } else if (orientation == CGAL::COPLANAR &&
|
|
|
- Plane_3(p_s, p_d, p_a).orthogonal_direction() !=
|
|
|
- Plane_3(p_s, p_d, p_b).orthogonal_direction())
|
|
|
- {
|
|
|
- // All 4 points are coplanar, but p_a and p_b are on each side of
|
|
|
- // the edge (p_s, p_d). This means the angle between triangle
|
|
|
- // (p_s, p_d, p_a) and (p_s, p_d, p_b) is exactly 180 degrees.
|
|
|
- start_idx = (i+1)%num_adj_faces;
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
- DerivedI circular_order = order;
|
|
|
- for (size_t i=0; i<num_adj_faces; i++)
|
|
|
+ // Angle between triangle (p_s, p_d, p_a) and (p_s, p_d, p_b) is
|
|
|
+ // more than 180 degrees.
|
|
|
+ start_idx = (i+1)%num_adj_faces;
|
|
|
+ break;
|
|
|
+ } else if (orientation == CGAL::COPLANAR &&
|
|
|
+ Plane_3(p_s, p_d, p_a).orthogonal_direction() !=
|
|
|
+ Plane_3(p_s, p_d, p_b).orthogonal_direction())
|
|
|
{
|
|
|
- order(i, 0) = circular_order((start_idx + i)%num_adj_faces, 0);
|
|
|
+ // All 4 points are coplanar, but p_a and p_b are on each side of
|
|
|
+ // the edge (p_s, p_d). This means the angle between triangle
|
|
|
+ // (p_s, p_d, p_a) and (p_s, p_d, p_b) is exactly 180 degrees.
|
|
|
+ start_idx = (i+1)%num_adj_faces;
|
|
|
+ break;
|
|
|
}
|
|
|
+ }
|
|
|
+ DerivedI circular_order = order;
|
|
|
+ for (size_t i=0; i<num_adj_faces; i++)
|
|
|
+ {
|
|
|
+ order(i, 0) = circular_order((start_idx + i)%num_adj_faces, 0);
|
|
|
+ }
|
|
|
}
|
|
|
|
|
|
template<
|