#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "tutorial_shared_path.h" #include int main(int argc, char * argv[]) { typedef Eigen::SparseMatrix SparseMat; //Read our mesh Eigen::MatrixXd V; Eigen::MatrixXi F, E; if(!igl::read_triangle_mesh( argc>1?argv[1]: TUTORIAL_SHARED_PATH "/beetle.off",V,F)) { std::cout << "Failed to load mesh." << std::endl; } igl::edges(F,E); //Constructing an exact function to smooth Eigen::VectorXd zexact = V.block(0,2,V.rows(),1).array() + 0.5*V.block(0,1,V.rows(),1).array() + V.block(0,1,V.rows(),1).array().pow(2) + V.block(0,2,V.rows(),1).array().pow(3); //Make the exact function noisy srand(5); const double s = 0.2*(zexact.maxCoeff() - zexact.minCoeff()); Eigen::VectorXd znoisy = zexact + s*Eigen::VectorXd::Random(zexact.size()); //Constructing the squared Laplacian and squared Hessian energy SparseMat L, M; igl::cotmatrix(V, F, L); igl::massmatrix(V, F, igl::MASSMATRIX_TYPE_BARYCENTRIC, M); Eigen::SimplicialLDLT solver(M); SparseMat MinvL = solver.solve(L); SparseMat QL = L.transpose()*MinvL; SparseMat QH; igl::hessian_energy(V, F, QH); //Solve to find Laplacian-smoothed and Hessian-smoothed solutions const double al = 8e-4; Eigen::SimplicialLDLT lapSolver(al*QL + (1.-al)*M); Eigen::VectorXd zl = lapSolver.solve(al*M*znoisy); const double ah = 5e-6; Eigen::SimplicialLDLT hessSolver(ah*QH + (1.-ah)*M); Eigen::VectorXd zh = hessSolver.solve(ah*M*znoisy); //Viewer that shows all functions: zexact, znoisy, zl, zh igl::opengl::glfw::Viewer viewer; viewer.selected_data().set_mesh(V,F); viewer.selected_data().show_lines = false; viewer.callback_key_down = [&](igl::opengl::glfw::Viewer & viewer, unsigned char key, int mod)->bool { //Graduate result to show isolines, then compute color matrix const Eigen::VectorXd* z; switch(key) { case '1': z = &zexact; break; case '2': z = &znoisy; break; case '3': z = &zl; break; case '4': z = &zh; break; default: return false; } Eigen::MatrixXd isoV; Eigen::MatrixXi isoE; if(key!='2') igl::isolines(V, F, *z, 30, isoV, isoE); viewer.selected_data().set_edges(isoV,isoE,Eigen::RowVector3d(0,0,0)); Eigen::MatrixXd colors; igl::jet(*z, true, colors); viewer.selected_data().set_colors(colors); return true; }; std::cout << R"(Usage: 1 Show original function 2 Show noisy function 3 Biharmonic smoothing (zero Neumann boundary) 4 Biharmonic smoothing (natural Hessian boundary) )"; viewer.launch(); return 0; }