#include #include #include #include #include #include #include #include #include #include #include "tutorial_shared_path.h" Eigen::MatrixXd V,BC; Eigen::VectorXd W; Eigen::MatrixXi T,F,G; double slice_z = 0.5; enum OverLayType { OVERLAY_NONE = 0, OVERLAY_INPUT = 1, OVERLAY_OUTPUT = 2, NUM_OVERLAY = 3, } overlay = OVERLAY_NONE; void update_visualization(igl::viewer::Viewer & viewer) { using namespace Eigen; using namespace std; Eigen::Vector4d plane( 0,0,1,-((1-slice_z)*V.col(2).minCoeff()+slice_z*V.col(2).maxCoeff())); MatrixXd V_vis; MatrixXi F_vis; VectorXi J; SparseMatrix bary; igl::slice_tets(V,T,plane,V_vis,F_vis,J,bary); VectorXd W_vis; igl::slice(W,J,W_vis); MatrixXd C_vis; // color without normalizing igl::parula(W_vis,false,C_vis); const auto & append_mesh = [&C_vis,&F_vis,&V_vis]( const Eigen::MatrixXd & V, const Eigen::MatrixXi & F, const RowVector3d & color) { F_vis.conservativeResize(F_vis.rows()+F.rows(),3); F_vis.bottomRows(F.rows()) = F.array()+V_vis.rows(); V_vis.conservativeResize(V_vis.rows()+V.rows(),3); V_vis.bottomRows(V.rows()) = V; C_vis.conservativeResize(C_vis.rows()+F.rows(),3); C_vis.bottomRows(F.rows()).rowwise() = color; }; switch(overlay) { case OVERLAY_INPUT: append_mesh(V,F,RowVector3d(1.,0.894,0.227)); break; case OVERLAY_OUTPUT: append_mesh(V,G,RowVector3d(0.8,0.8,0.8)); break; default: break; } viewer.data.clear(); viewer.data.set_mesh(V_vis,F_vis); viewer.data.set_colors(C_vis); viewer.data.set_face_based(true); } bool key_down(igl::viewer::Viewer& viewer, unsigned char key, int mod) { switch(key) { default: return false; case ' ': overlay = (OverLayType)((1+(int)overlay)%NUM_OVERLAY); break; case '.': slice_z = std::min(slice_z+0.01,0.99); break; case ',': slice_z = std::max(slice_z-0.01,0.01); break; } update_visualization(viewer); return true; } int main(int argc, char *argv[]) { using namespace Eigen; using namespace std; cout<<"Usage:"<0.5).count(),4); { size_t k = 0; for(size_t t = 0;t0.5) { CT.row(k) = T.row(t); k++; } } } // find bounary facets of interior tets igl::boundary_facets(CT,G); // boundary_facets seems to be reversed... G = G.rowwise().reverse().eval(); // normalize W = (W.array() - W.minCoeff())/(W.maxCoeff()-W.minCoeff()); // Plot the generated mesh igl::viewer::Viewer viewer; update_visualization(viewer); viewer.callback_key_down = &key_down; viewer.launch(); }