// This file is part of libigl, a simple c++ geometry processing library. // // Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla Public License // v. 2.0. If a copy of the MPL was not distributed with this file, You can // obtain one at http://mozilla.org/MPL/2.0/. #include "mvc.h" #include <vector> #include <cassert> #include <iostream> // Broken Implementation IGL_INLINE void igl::mvc(const Eigen::MatrixXd &V, const Eigen::MatrixXd &C, Eigen::MatrixXd &W) { // at least three control points assert(C.rows()>2); // dimension of points assert(C.cols() == 3 || C.cols() == 2); assert(V.cols() == 3 || V.cols() == 2); // number of polygon points int num = C.rows(); Eigen::MatrixXd V1,C1; int i_prev, i_next; // check if either are 3D but really all z's are 0 bool V_flat = (V.cols() == 3) && (std::sqrt( (V.col(3)).dot(V.col(3)) ) < 1e-10); bool C_flat = (C.cols() == 3) && (std::sqrt( (C.col(3)).dot(C.col(3)) ) < 1e-10); // if both are essentially 2D then ignore z-coords if((C.cols() == 2 || C_flat) && (V.cols() == 2 || V_flat)) { // ignore z coordinate V1 = V.block(0,0,V.rows(),2); C1 = C.block(0,0,C.rows(),2); } else { // give dummy z coordinate to either mesh or poly if(V.rows() == 2) { V1 = Eigen::MatrixXd(V.rows(),3); V1.block(0,0,V.rows(),2) = V; } else V1 = V; if(C.rows() == 2) { C1 = Eigen::MatrixXd(C.rows(),3); C1.block(0,0,C.rows(),2) = C; } else C1 = C; // check that C is planar // average normal around poly corners Eigen::Vector3d n = Eigen::Vector3d::Zero(); // take centroid as point on plane Eigen::Vector3d p = Eigen::Vector3d::Zero(); for (int i = 0; i<num; ++i) { i_prev = (i>0)?(i-1):(num-1); i_next = (i<num-1)?(i+1):0; Eigen::Vector3d vnext = (C1.row(i_next) - C1.row(i)).transpose(); Eigen::Vector3d vprev = (C1.row(i_prev) - C1.row(i)).transpose(); n += vnext.cross(vprev); p += C1.row(i); } p/=num; n/=num; // normalize n n /= std::sqrt(n.dot(n)); // check that poly is really coplanar #ifndef NDEBUG for (int i = 0; i<num; ++i) { double dist_to_plane_C = std::abs((C1.row(i)-p.transpose()).dot(n)); assert(dist_to_plane_C<1e-10); } #endif // check that poly is really coplanar for (int i = 0; i<V1.rows(); ++i) { double dist_to_plane_V = std::abs((V1.row(i)-p.transpose()).dot(n)); if(dist_to_plane_V>1e-10) std::cerr<<"Distance from V to plane of C is large..."<<std::endl; } // change of basis Eigen::Vector3d b1 = C1.row(1)-C1.row(0); Eigen::Vector3d b2 = n.cross(b1); // normalize basis rows b1 /= std::sqrt(b1.dot(b1)); b2 /= std::sqrt(b2.dot(b2)); n /= std::sqrt(n.dot(n)); //transpose of the basis matrix in the m-file Eigen::Matrix3d basis = Eigen::Matrix3d::Zero(); basis.col(0) = b1; basis.col(1) = b2; basis.col(2) = n; // change basis of rows vectors by right multiplying with inverse of matrix // with basis vectors as rows Eigen::ColPivHouseholderQR<Eigen::Matrix3d> solver = basis.colPivHouseholderQr(); // Throw away coordinates in normal direction V1 = solver.solve(V1.transpose()).transpose().block(0,0,V1.rows(),2); C1 = solver.solve(C1.transpose()).transpose().block(0,0,C1.rows(),2); } // vectors from V to every C, where CmV(i,j,:) is the vector from domain // vertex j to handle i double EPS = 1e-10; Eigen::MatrixXd WW = Eigen::MatrixXd(C1.rows(), V1.rows()); Eigen::MatrixXd dist_C_V (C1.rows(), V1.rows()); std::vector< std::pair<int,int> > on_corner(0); std::vector< std::pair<int,int> > on_segment(0); for (int i = 0; i<C1.rows(); ++i) { i_prev = (i>0)?(i-1):(num-1); i_next = (i<num-1)?(i+1):0; // distance from each corner in C to the next corner so that edge_length(i) // is the distance from C(i,:) to C(i+1,:) defined cyclically double edge_length = std::sqrt((C1.row(i) - C1.row(i_next)).dot(C1.row(i) - C1.row(i_next))); for (int j = 0; j<V1.rows(); ++j) { Eigen::VectorXd v = C1.row(i) - V1.row(j); Eigen::VectorXd vnext = C1.row(i_next) - V1.row(j); Eigen::VectorXd vprev = C1.row(i_prev) - V1.row(j); // distance from V to every C, where dist_C_V(i,j) is the distance from domain // vertex j to handle i dist_C_V(i,j) = std::sqrt(v.dot(v)); double dist_C_V_next = std::sqrt(vnext.dot(vnext)); double a_prev = std::atan2(vprev[1],vprev[0]) - std::atan2(v[1],v[0]); double a_next = std::atan2(v[1],v[0]) - std::atan2(vnext[1],vnext[0]); // mean value coordinates WW(i,j) = (std::tan(a_prev/2.0) + std::tan(a_next/2.0)) / dist_C_V(i,j); if (dist_C_V(i,j) < EPS) on_corner.push_back(std::make_pair(j,i)); else // only in case of no-corner (no need for checking for multiple segments afterwards -- // should only be on one segment (otherwise must be on a corner and we already // handled that) // domain vertex j is on the segment from i to i+1 if the distances from vj to // pi and pi+1 are about if(abs((dist_C_V(i,j) + dist_C_V_next) / edge_length - 1) < EPS) on_segment.push_back(std::make_pair(j,i)); } } // handle degenerate cases // snap vertices close to corners for (unsigned i = 0; i<on_corner.size(); ++i) { int vi = on_corner[i].first; int ci = on_corner[i].second; for (int ii = 0; ii<C.rows(); ++ii) WW(ii,vi) = (ii==ci)?1:0; } // snap vertices close to segments for (unsigned i = 0; i<on_segment.size(); ++i) { int vi = on_segment[i].first; int ci = on_segment[i].second; int ci_next = (ci<num-1)?(ci+1):0; for (int ii = 0; ii<C.rows(); ++ii) if (ii == ci) WW(ii,vi) = dist_C_V(ci_next,vi); else { if ( ii == ci_next) WW(ii,vi) = dist_C_V(ci,vi); else WW(ii,vi) = 0; } } // normalize W for (int i = 0; i<V.rows(); ++i) WW.col(i) /= WW.col(i).sum(); // we've made W transpose W = WW.transpose(); }