#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __APPLE__ # include #else # include #endif #include #include #include #include struct State { igl::Camera camera; } s; enum RotationType { ROTATION_TYPE_IGL_TRACKBALL = 0, ROTATION_TYPE_TWO_AXIS_VALUATOR_FIXED_UP = 1, NUM_ROTATION_TYPES = 2, } rotation_type; bool is_rotating = false; int down_x,down_y; igl::Camera down_camera; bool is_animating = false; double animation_start_time = 0; double ANIMATION_DURATION = 0.5; Eigen::Quaterniond animation_from_quat; Eigen::Quaterniond animation_to_quat; // Use vector for range-based `for` std::vector undo_stack; std::vector redo_stack; void push_undo() { undo_stack.push_back(s); // Clear redo_stack = std::vector(); } void undo() { using namespace std; if(!undo_stack.empty()) { redo_stack.push_back(s); s = undo_stack.front(); undo_stack.pop_back(); } } void redo() { using namespace std; if(!redo_stack.empty()) { undo_stack.push_back(s); s = redo_stack.front(); redo_stack.pop_back(); } } void TW_CALL set_rotation_type(const void * value, void * clientData) { using namespace Eigen; using namespace std; using namespace igl; const RotationType old_rotation_type = rotation_type; rotation_type = *(const RotationType *)(value); if(rotation_type == ROTATION_TYPE_TWO_AXIS_VALUATOR_FIXED_UP && old_rotation_type != ROTATION_TYPE_TWO_AXIS_VALUATOR_FIXED_UP) { push_undo(); animation_from_quat = s.camera.m_rotation_conj; snap_to_fixed_up(animation_from_quat,animation_to_quat); // start animation animation_start_time = get_seconds(); is_animating = true; } } void TW_CALL get_rotation_type(void * value, void *clientData) { RotationType * rt = (RotationType *)(value); *rt = rotation_type; } // Width and height of window int width,height; // Position of light float light_pos[4] = {0.1,0.1,-0.9,0}; // Vertex positions, normals, colors and centroid Eigen::MatrixXd V,N,TC,mid; Eigen::MatrixXi F,TF; GLuint tex_id = 0; int selected_col = 0; // Faces // Bounding box diagonal length double bbd; // Running ambient occlusion Eigen::VectorXd S; int tot_num_samples = 0; #define REBAR_NAME "temp.rbr" igl::anttweakbar::ReTwBar rebar; // Pointer to the tweak bar bool flip_y = false; bool rotate_xy = false; void reshape(int width,int height) { using namespace std; // Save width and height ::width = width; ::height = height; glMatrixMode(GL_PROJECTION); glLoadIdentity(); glViewport(0,0,width,height); // Send the new window size to AntTweakBar TwWindowSize(width, height); // Set aspect for all cameras s.camera.m_aspect = (double)width/(double)height; for(auto & s : undo_stack) { s.camera.m_aspect = (double)width/(double)height; } for(auto & s : redo_stack) { s.camera.m_aspect = (double)width/(double)height; } } void push_scene() { using namespace igl; using namespace std; glMatrixMode(GL_PROJECTION); glPushMatrix(); glLoadIdentity(); auto & camera = s.camera; gluPerspective(camera.m_angle,camera.m_aspect,camera.m_near,camera.m_far); glMatrixMode(GL_MODELVIEW); glPushMatrix(); glLoadIdentity(); gluLookAt( camera.eye()(0), camera.eye()(1), camera.eye()(2), camera.at()(0), camera.at()(1), camera.at()(2), camera.up()(0), camera.up()(1), camera.up()(2)); } void pop_scene() { glMatrixMode(GL_PROJECTION); glPopMatrix(); glMatrixMode(GL_MODELVIEW); glPopMatrix(); } void pop_object() { glPopMatrix(); } // Scale and shift for object void push_object() { glPushMatrix(); glScaled(2./bbd,2./bbd,2./bbd); glTranslated(-mid(0,0),-mid(0,1),-mid(0,2)); } // Set up double-sided lights void lights() { using namespace std; glEnable(GL_LIGHTING); glLightModelf(GL_LIGHT_MODEL_TWO_SIDE,GL_TRUE); glEnable(GL_LIGHT0); glEnable(GL_LIGHT1); float amb[4]; amb[0] = amb[1] = amb[2] = 0; amb[3] = 1.0; float diff[4] = {0.0,0.0,0.0,0.0}; diff[0] = diff[1] = diff[2] = (1.0 - 0/0.4);; diff[3] = 1.0; float zeros[4] = {0.0,0.0,0.0,0.0}; float pos[4]; copy(light_pos,light_pos+4,pos); glLightfv(GL_LIGHT0,GL_AMBIENT,amb); glLightfv(GL_LIGHT0,GL_DIFFUSE,diff); glLightfv(GL_LIGHT0,GL_SPECULAR,zeros); glLightfv(GL_LIGHT0,GL_POSITION,pos); pos[0] *= -1; pos[1] *= -1; pos[2] *= -1; glLightfv(GL_LIGHT1,GL_AMBIENT,amb); glLightfv(GL_LIGHT1,GL_DIFFUSE,diff); glLightfv(GL_LIGHT1,GL_SPECULAR,zeros); glLightfv(GL_LIGHT1,GL_POSITION,pos); } const float back[4] = {30.0/255.0,30.0/255.0,50.0/255.0,0}; void display() { using namespace Eigen; using namespace igl; using namespace std; glClearColor(back[0],back[1],back[2],0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); if(is_animating) { double t = (get_seconds() - animation_start_time)/ANIMATION_DURATION; if(t > 1) { t = 1; is_animating = false; } const Quaterniond q = animation_from_quat.slerp(t,animation_to_quat).normalized(); s.camera.orbit(q.conjugate()); } glDisable(GL_LIGHTING); lights(); push_scene(); glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LESS); glEnable(GL_NORMALIZE); glEnable(GL_COLOR_MATERIAL); glColorMaterial(GL_FRONT_AND_BACK,GL_AMBIENT_AND_DIFFUSE); push_object(); // Draw the model // Set material properties glEnable(GL_COLOR_MATERIAL); glColor3f(1,1,1); glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D,tex_id); MatrixXd _d; MatrixXi _i; glMatrixMode(GL_TEXTURE); glPushMatrix(); glLoadIdentity(); if(flip_y) { glTranslated(0,1,0); glScaled(1,-1,1); } if(rotate_xy) { glRotated(90,0,0,1); glTranslated(-1,0,0); } glMatrixMode(GL_MODELVIEW); igl::opengl2::draw_mesh(V,F,N,MatrixXi(),MatrixXd(),TC,TF,MatrixXd(),0,MatrixXi(),0); glMatrixMode(GL_TEXTURE); glPopMatrix(); glMatrixMode(GL_MODELVIEW); pop_object(); // Draw a nice floor glPushMatrix(); const double floor_offset = -2./bbd*(V.col(1).maxCoeff()-mid(1)); glTranslated(0,floor_offset,0); const float GREY[4] = {0.5,0.5,0.6,1.0}; const float DARK_GREY[4] = {0.2,0.2,0.3,1.0}; glEnable(GL_POLYGON_OFFSET_FILL); glPolygonOffset(-1,1); glBegin(GL_QUADS); glNormal3d(0,1,0); glTexCoord2d(0,1); glVertex3d(-1,0,1); glTexCoord2d(1,1); glVertex3d(1,0,1); glTexCoord2d(1,0); glVertex3d(1,0,-1); glTexCoord2d(0,0); glVertex3d(-1,0,-1); glEnd(); glDisable(GL_POLYGON_OFFSET_FILL); glDisable(GL_TEXTURE_2D); igl::opengl2::draw_floor(GREY,DARK_GREY); glPopMatrix(); pop_scene(); igl::opengl::report_gl_error(); TwDraw(); glutSwapBuffers(); if(is_animating) { glutPostRedisplay(); } } void mouse_wheel(int wheel, int direction, int mouse_x, int mouse_y) { using namespace std; using namespace igl; using namespace Eigen; GLint viewport[4]; glGetIntegerv(GL_VIEWPORT,viewport); if(wheel == 0 && TwMouseMotion(mouse_x, viewport[3] - mouse_y)) { static double mouse_scroll_y = 0; const double delta_y = 0.125*direction; mouse_scroll_y += delta_y; TwMouseWheel(mouse_scroll_y); return; } push_undo(); auto & camera = s.camera; if(wheel==0) { // factor of zoom change double s = (1.-0.01*direction); //// FOV zoom: just widen angle. This is hardly ever appropriate. //camera.m_angle *= s; //camera.m_angle = min(max(camera.m_angle,1),89); camera.push_away(s); }else { // Dolly zoom: camera.dolly_zoom((double)direction*1.0); } } void mouse(int glutButton, int glutState, int mouse_x, int mouse_y) { using namespace std; using namespace Eigen; using namespace igl; bool tw_using = TwEventMouseButtonGLUT(glutButton,glutState,mouse_x,mouse_y); switch(glutButton) { case GLUT_RIGHT_BUTTON: case GLUT_LEFT_BUTTON: { switch(glutState) { case 1: // up glutSetCursor(GLUT_CURSOR_LEFT_ARROW); is_rotating = false; break; case 0: // down if(!tw_using) { glutSetCursor(GLUT_CURSOR_CYCLE); // collect information for trackball is_rotating = true; down_camera = s.camera; down_x = mouse_x; down_y = mouse_y; } break; } break; } // Scroll down case 3: { mouse_wheel(0,-1,mouse_x,mouse_y); break; } // Scroll up case 4: { mouse_wheel(0,1,mouse_x,mouse_y); break; } // Scroll left case 5: { mouse_wheel(1,-1,mouse_x,mouse_y); break; } // Scroll right case 6: { mouse_wheel(1,1,mouse_x,mouse_y); break; } } glutPostRedisplay(); } void mouse_drag(int mouse_x, int mouse_y) { using namespace igl; using namespace Eigen; if(is_rotating) { glutSetCursor(GLUT_CURSOR_CYCLE); Quaterniond q; auto & camera = s.camera; switch(rotation_type) { case ROTATION_TYPE_IGL_TRACKBALL: { // Rotate according to trackball igl::trackball( width, height, 2.0, down_camera.m_rotation_conj.coeffs().data(), down_x, down_y, mouse_x, mouse_y, q.coeffs().data()); break; } case ROTATION_TYPE_TWO_AXIS_VALUATOR_FIXED_UP: { // Rotate according to two axis valuator with fixed up vector two_axis_valuator_fixed_up( width, height, 2.0, down_camera.m_rotation_conj, down_x, down_y, mouse_x, mouse_y, q); break; } default: break; } camera.orbit(q.conjugate()); }else { TwEventMouseMotionGLUT(mouse_x, mouse_y); } glutPostRedisplay(); } void key(unsigned char key, int mouse_x, int mouse_y) { using namespace std; switch(key) { // ESC case char(27): rebar.save(REBAR_NAME); // ^C case char(3): exit(0); default: if(!TwEventKeyboardGLUT(key,mouse_x,mouse_y)) { cout<<"Unknown key command: "< > vV,vN,vTC; vector > vF,vTF,vFN; // Convert extension to lower case if(!igl::readOBJ(filename,vV,vTC,vN,vF,vTF,vFN)) { return 1; } if(vV.size() > 0) { if(!list_to_matrix(vV,V)) { cerr<<"Bad V"< 0) { if(!list_to_matrix(vTC,TC)) { cerr<<"Bad TC"< 0) { if(!list_to_matrix(vTF,TF)) { cerr<<"Bad TF"< 0) //{ // if(!list_to_matrix(vN,N)) // { // return 1; // } //}else //{ per_vertex_normals(V,F,N); //} // Compute normals, centroid, colors, bounding box diagonal mid = 0.5*(V.colwise().maxCoeff() + V.colwise().minCoeff()); bbd = (V.colwise().maxCoeff() - V.colwise().minCoeff()).maxCoeff(); // Init glut glutInit(&argc,argv); if( !TwInit(TW_OPENGL, NULL) ) { // A fatal error occured fprintf(stderr, "AntTweakBar initialization failed: %s\n", TwGetLastError()); return 1; } // Create a tweak bar rebar.TwNewBar("TweakBar"); rebar.TwAddVarRW("camera_rotation", TW_TYPE_QUAT4D, s.camera.m_rotation_conj.coeffs().data(), "open readonly=true"); s.camera.push_away(3); s.camera.dolly_zoom(25-s.camera.m_angle); TwType RotationTypeTW = igl::anttweakbar::ReTwDefineEnumFromString("RotationType", "igl_trackball,two-a...-fixed-up"); rebar.TwAddVarCB( "rotation_type", RotationTypeTW, set_rotation_type,get_rotation_type,NULL,"keyIncr=] keyDecr=["); rebar.TwAddVarRW("flip_y", TW_TYPE_BOOLCPP, &flip_y,"key=f"); rebar.TwAddVarRW("rotate_xy", TW_TYPE_BOOLCPP, &rotate_xy,"key=r"); rebar.load(REBAR_NAME); glutInitDisplayString( "rgba depth double samples>=8 "); glutInitWindowSize(glutGet(GLUT_SCREEN_WIDTH)/2.0,glutGet(GLUT_SCREEN_HEIGHT)); glutCreateWindow("colored-mesh"); glutDisplayFunc(display); glutReshapeFunc(reshape); glutKeyboardFunc(key); glutMouseFunc(mouse); glutMotionFunc(mouse_drag); glutPassiveMotionFunc( [](int x, int y) { TwEventMouseMotionGLUT(x,y); glutPostRedisplay(); }); static std::function timer_bounce; auto timer = [] (int ms) { timer_bounce(ms); }; timer_bounce = [&] (int ms) { glutTimerFunc(ms, timer, ms); glutPostRedisplay(); }; glutTimerFunc(500, timer, 500); // Must be called after opengl context is initialized if(!igl::png::texture_from_file(tfilename,tex_id)) { return 1; } glutMainLoop(); return 0; }