#include #include #include #include #include #include "tutorial_shared_path.h" int main(int argc, char * argv[]) { // An implicit function which is zero on the surface of a sphere centered at the origin with radius 1 // This function is negative inside the surface and positive outside the surface std::function scalar_func = [](const Eigen::RowVector3d& pt) -> double { return pt.norm() - 1.0; }; // We know that the point (0, 0, 1) lies on the implicit surface Eigen::RowVector3d p0(0., 0., 1.); // Construct a sparse voxel grid whose cubes have edge length eps = 0.1. // The cubes will form a thin shell around the implicit surface const double eps = 0.1; // CS will hold one scalar value at each cube vertex corresponding // the value of the implicit at that vertex Eigen::VectorXd CS; // CV will hold the positions of the corners of the sparse voxel grid Eigen::MatrixXd CV; // CI is a #cubes x 8 matrix of indices where each row contains the // indices into CV of the 8 corners of a cube Eigen::MatrixXi CI; // Construct the voxel grid, populating CS, CV, and CI igl::sparse_voxel_grid(p0, scalar_func, eps, 1024 /*expected_number_of_cubes*/, CS, CV, CI); // Given the sparse voxel grid, use Marching Cubes to construct a triangle mesh of the surface Eigen::MatrixXi F; Eigen::MatrixXd V; igl::copyleft::marching_cubes(CS, CV, CI, V, F); // Draw the meshed implicit surface igl::opengl::glfw::Viewer viewer; viewer.data().clear(); viewer.data().set_mesh(V,F); viewer.data().set_face_based(true); viewer.launch(); }