# Add the igl library to the modules search path import sys, os sys.path.insert(0, os.getcwd() + "/../") import pyigl as igl V = igl.eigen.MatrixXd() F = igl.eigen.MatrixXi() igl.readOFF("../../tutorial/shared/camelhead.off",V,F) # Find boundary edges E = igl.eigen.MatrixXi() igl.boundary_facets(F,E); # Find boundary vertices b = igl.eigen.MatrixXi() IA = igl.eigen.MatrixXi() IC = igl.eigen.MatrixXi() igl.unique(E,b,IA,IC); # List of all vertex indices vall = igl.eigen.MatrixXi() vin = igl.eigen.MatrixXi() igl.coloni(0,V.rows()-1,vall) # List of interior indices igl.setdiff(vall,b,vin,IA) # Construct and slice up Laplacian L = igl.eigen.SparseMatrixd() L_in_in = igl.eigen.SparseMatrixd() L_in_b = igl.eigen.SparseMatrixd() igl.cotmatrix(V,F,L) igl.slice(L,vin,vin,L_in_in) igl.slice(L,vin,b,L_in_b) # Dirichlet boundary conditions from z-coordinate bc = igl.eigen.MatrixXd() Z = V.col(2) igl.slice(Z,b,bc) # Solve PDE solver = igl.eigen.SimplicialLLTsparse(-L_in_in) Z_in = solver.solve(L_in_b*bc) # slice into solution igl.slice_into(Z_in,vin,Z) # Alternative, short hand mqwf = igl.min_quad_with_fixed_data() # Linear term is 0 B = igl.eigen.MatrixXd() B.setZero(V.rows(),1); # Empty constraints Beq = igl.eigen.MatrixXd() Aeq = igl.eigen.SparseMatrixd() # Our cotmatrix is _negative_ definite, so flip sign igl.min_quad_with_fixed_precompute(-L,b,Aeq,True,mqwf) igl.min_quad_with_fixed_solve(mqwf,B,bc,Beq,Z) # Pseudo-color based on solution C = igl.eigen.MatrixXd() igl.jet(Z,True,C) # Plot the mesh with pseudocolors viewer = igl.viewer.Viewer() viewer.data.set_mesh(V, F) viewer.core.show_lines = False viewer.data.set_colors(C) viewer.launch()