#include <igl/cat.h> #include <igl/edge_lengths.h> #include <igl/parula.h> #include <igl/per_edge_normals.h> #include <igl/per_face_normals.h> #include <igl/per_vertex_normals.h> #include <igl/point_mesh_squared_distance.h> #include <igl/readMESH.h> #include <igl/signed_distance.h> #include <igl/slice_mask.h> #include <igl/slice_tets.h> #include <igl/upsample.h> #include <igl/viewer/Viewer.h> #include <Eigen/Sparse> #include <iostream> #include "tutorial_shared_path.h" Eigen::MatrixXd V; Eigen::MatrixXi T,F; igl::AABB<Eigen::MatrixXd,3> tree; Eigen::MatrixXd FN,VN,EN; Eigen::MatrixXi E; Eigen::VectorXi EMAP; double max_distance = 1; double slice_z = 0.5; bool overlay = false; void update_visualization(igl::viewer::Viewer & viewer) { using namespace Eigen; using namespace std; Eigen::Vector4d plane( 0,0,1,-((1-slice_z)*V.col(2).minCoeff()+slice_z*V.col(2).maxCoeff())); MatrixXd V_vis; MatrixXi F_vis; // Extract triangle mesh slice through volume mesh and subdivide nasty // triangles { VectorXi J; SparseMatrix<double> bary; igl::slice_tets(V,T,plane,V_vis,F_vis,J,bary); while(true) { MatrixXd l; igl::edge_lengths(V_vis,F_vis,l); l /= (V_vis.colwise().maxCoeff() - V_vis.colwise().minCoeff()).norm(); const double max_l = 0.03; if(l.maxCoeff()<max_l) { break; } Array<bool,Dynamic,1> bad = l.array().rowwise().maxCoeff() > max_l; MatrixXi F_vis_bad, F_vis_good; igl::slice_mask(F_vis,bad,1,F_vis_bad); igl::slice_mask(F_vis,(bad!=true).eval(),1,F_vis_good); igl::upsample(V_vis,F_vis_bad); F_vis = igl::cat(1,F_vis_bad,F_vis_good); } } // Compute signed distance VectorXd S_vis; { VectorXi I; MatrixXd N,C; // Bunny is a watertight mesh so use pseudonormal for signing signed_distance_pseudonormal(V_vis,V,F,tree,FN,VN,EN,EMAP,S_vis,I,C,N); } // push to [0,1] range S_vis.array() = 0.5*(S_vis.array()/max_distance)+0.5; MatrixXd C_vis; // color without normalizing igl::parula(S_vis,false,C_vis); const auto & append_mesh = [&C_vis,&F_vis,&V_vis]( const Eigen::MatrixXd & V, const Eigen::MatrixXi & F, const RowVector3d & color) { F_vis.conservativeResize(F_vis.rows()+F.rows(),3); F_vis.bottomRows(F.rows()) = F.array()+V_vis.rows(); V_vis.conservativeResize(V_vis.rows()+V.rows(),3); V_vis.bottomRows(V.rows()) = V; C_vis.conservativeResize(C_vis.rows()+V.rows(),3); C_vis.bottomRows(V.rows()).rowwise() = color; }; if(overlay) { append_mesh(V,F,RowVector3d(0.8,0.8,0.8)); } viewer.data.clear(); viewer.data.set_mesh(V_vis,F_vis); viewer.data.set_colors(C_vis); viewer.core.lighting_factor = overlay; } bool key_down(igl::viewer::Viewer& viewer, unsigned char key, int mod) { switch(key) { default: return false; case ' ': overlay ^= true; break; case '.': slice_z = std::min(slice_z+0.01,0.99); break; case ',': slice_z = std::max(slice_z-0.01,0.01); break; } update_visualization(viewer); return true; } int main(int argc, char *argv[]) { using namespace Eigen; using namespace std; cout<<"Usage:"<<endl; cout<<"[space] toggle showing surface."<<endl; cout<<"'.'/',' push back/pull forward slicing plane."<<endl; cout<<endl; // Load mesh: (V,T) tet-mesh of convex hull, F contains original surface // triangles igl::readMESH(TUTORIAL_SHARED_PATH "/bunny.mesh",V,T,F); // Encapsulated call to point_mesh_squared_distance to determine bounds { VectorXd sqrD; VectorXi I; MatrixXd C; igl::point_mesh_squared_distance(V,V,F,sqrD,I,C); max_distance = sqrt(sqrD.maxCoeff()); } // Precompute signed distance AABB tree tree.init(V,F); // Precompute vertex,edge and face normals igl::per_face_normals(V,F,FN); igl::per_vertex_normals( V,F,igl::PER_VERTEX_NORMALS_WEIGHTING_TYPE_ANGLE,FN,VN); igl::per_edge_normals( V,F,igl::PER_EDGE_NORMALS_WEIGHTING_TYPE_UNIFORM,FN,EN,E,EMAP); // Plot the generated mesh igl::viewer::Viewer viewer; update_visualization(viewer); viewer.callback_key_down = &key_down; viewer.core.show_lines = false; viewer.launch(); }