// This file is part of libigl, a simple c++ geometry processing library. // // Copyright (C) 2016 Yotam Gingold // // This Source Code Form is subject to the terms of the Mozilla Public License // v. 2.0. If a copy of the MPL was not distributed with this file, You can // obtain one at http://mozilla.org/MPL/2.0/. #include "seam_edges.h" #include #include #include namespace { // Computes the orientation of `c` relative to the line between `a` and `b`. // Assumes 2D vector input. // Based on: https://www.cs.cmu.edu/~quake/robust.html template< typename scalar_t > inline scalar_t orientation( const Eigen::Matrix< scalar_t, 2, 1 >& a, const Eigen::Matrix< scalar_t, 2, 1 >& b, const Eigen::Matrix< scalar_t, 2, 1 >& c ) { typedef Eigen::Matrix< scalar_t, 2, 1 > Vector2S; const Vector2S row0 = a - c; const Vector2S row1 = b - c; return row0(0)*row1(1) - row1(0)*row0(1); } } // I have verified that this function produces the exact same output as // `find_seam_fast.py` for `cow_triangled.obj`. template IGL_INLINE void seam_edges( const Eigen::PlainObjectBase& V, const Eigen::PlainObjectBase& TC, const Eigen::PlainObjectBase& F, const Eigen::PlainObjectBase& FTC, Eigen::PlainObjectBase& seams, Eigen::PlainObjectBase& boundaries, Eigen::PlainObjectBase& foldovers ) { // Assume triangles. assert( F.cols() == 3 ); assert( F.cols() == FTC.cols() ); assert( F.rows() == FTC.rows() ); // Assume 2D texture coordinates (foldovers tests). assert( TC.cols() == 2 ); typedef Eigen::Matrix< typename DerivedT::Scalar, 2, 1 > Vector2S; seams .setZero( 3*F.rows(), 4 ); boundaries.setZero( 3*F.rows(), 2 ); foldovers .setZero( 3*F.rows(), 4 ); int num_seams = 0; int num_boundaries = 0; int num_foldovers = 0; // A map from a pair of vertex indices to the index (face and endpoints) // into face_position_indices. // The following should be true for every key, value pair: // key == face_position_indices[ value ] // This gives us a "reverse map" so that we can look up other face // attributes based on position edges. // The value are written in the format returned by numpy.where(), // which stores multi-dimensional indices such as array[a0,b0], array[a1,b1] // as ( (a0,a1), (b0,b1) ). // We need to make a hash function for our directed edges. // We'll use i*V.rows() + j. typedef std::pair< typename DerivedF::Scalar, typename DerivedF::Scalar > directed_edge; const int numV = V.rows(); const int numF = F.rows(); auto edge_hasher = [numV]( directed_edge const& e ) { return e.first*numV + e.second; }; // When we pass a hash function object, we also need to specify the number of buckets. // The Euler characteristic says that the number of undirected edges is numV + numF -2*genus. std::unordered_map< directed_edge, std::pair< int, int >, decltype( edge_hasher ) > directed_position_edge2face_position_index( 2*( numV + numF ), edge_hasher ); for( int fi = 0; fi < F.rows(); ++fi ) { for( int i = 0; i < 3; ++i ) { const int j = ( i+1 ) % 3; directed_position_edge2face_position_index[ std::make_pair( F(fi,i), F(fi,j) ) ] = std::make_pair( fi, i ); } } // First find all undirected position edges (collect both orientations of // the directed edges). std::unordered_set< directed_edge, decltype( edge_hasher ) > undirected_position_edges( numV + numF, edge_hasher ); for( const auto& el : directed_position_edge2face_position_index ) { undirected_position_edges.insert( el.first ); undirected_position_edges.insert( std::make_pair( el.first.second, el.first.first ) ); } // Now we will iterate over all position edges. // Seam edges are the edges whose two opposite directed edges have different // texcoord indices (or one doesn't exist at all in the case of a mesh // boundary). for( const auto& vp_edge : undirected_position_edges ) { const auto vp_edge_reverse = std::make_pair( vp_edge.second, vp_edge.first ); // If it and its opposite exist as directed edges, check if their // texture coordinate indices match. if( directed_position_edge2face_position_index.count( vp_edge ) && directed_position_edge2face_position_index.count( vp_edge_reverse ) ) { const auto forwards = directed_position_edge2face_position_index[ vp_edge ]; const auto backwards = directed_position_edge2face_position_index[ vp_edge_reverse ]; // NOTE: They should never be equal. assert( forwards != backwards ); // NOTE: Non-matching seam edges will show up twice, once as // ( forwards, backwards ) and once as // ( backwards, forwards ). We don't need to examine both, // so continue only if forwards < backwards. if( forwards < backwards ) continue; // If the texcoord indices match (are similarly flipped), // this edge is not a seam. It could be a foldover. if( std::make_pair( FTC( forwards.first, forwards.second ), FTC( forwards.first, ( forwards.second+1 ) % 3 ) ) == std::make_pair( FTC( backwards.first, ( backwards.second+1 ) % 3 ), FTC( backwards.first, backwards.second ) ) ) { // Check for foldovers in UV space. // Get the edge (a,b) and the two opposite vertices's texture coordinates. const Vector2S a = TC.row( FTC( forwards.first, forwards.second ) ); const Vector2S b = TC.row( FTC( forwards.first, (forwards.second+1) % 3 ) ); const Vector2S c_forwards = TC.row( FTC( forwards .first, (forwards .second+2) % 3 ) ); const Vector2S c_backwards = TC.row( FTC( backwards.first, (backwards.second+2) % 3 ) ); // If the opposite vertices' texture coordinates fall on the same side // of the edge, we have a UV-space foldover. const auto orientation_forwards = orientation( a, b, c_forwards ); const auto orientation_backwards = orientation( a, b, c_backwards ); if( ( orientation_forwards > 0 && orientation_backwards > 0 ) || ( orientation_forwards < 0 && orientation_backwards < 0 ) ) { foldovers( num_foldovers, 0 ) = forwards.first; foldovers( num_foldovers, 1 ) = forwards.second; foldovers( num_foldovers, 2 ) = backwards.first; foldovers( num_foldovers, 3 ) = backwards.second; num_foldovers += 1; } } // Otherwise, we have a non-matching seam edge. else { seams( num_seams, 0 ) = forwards.first; seams( num_seams, 1 ) = forwards.second; seams( num_seams, 2 ) = backwards.first; seams( num_seams, 3 ) = backwards.second; num_seams += 1; } } // Otherwise, the edge and its opposite aren't both in the directed // edges. One of them should be. else if( directed_position_edge2face_position_index.count( vp_edge ) ) { const auto forwards = directed_position_edge2face_position_index[ vp_edge ]; boundaries( num_boundaries, 0 ) = forwards.first; boundaries( num_boundaries, 1 ) = forwards.second; num_boundaries += 1; } else if( directed_position_edge2face_position_index.count( vp_edge_reverse ) ) { const auto backwards = directed_position_edge2face_position_index[ vp_edge_reverse ]; boundaries( num_boundaries, 0 ) = backwards.first; boundaries( num_boundaries, 1 ) = backwards.second; num_boundaries += 1; } else { // This should never happen! One of these two must have been seen. assert( directed_position_edge2face_position_index.count( vp_edge ) || directed_position_edge2face_position_index.count( vp_edge_reverse ) ); } } seams .conservativeResize( num_seams, Eigen::NoChange_t() ); boundaries.conservativeResize( num_boundaries, Eigen::NoChange_t() ); foldovers .conservativeResize( num_foldovers, Eigen::NoChange_t() ); }