import sys, os import math # Add the igl library to the modules search path sys.path.insert(0, os.getcwd() + "/../") import pyigl as igl from shared import TUTORIAL_SHARED_PATH, check_dependencies dependencies = ["viewer"] check_dependencies(dependencies) V = igl.eigen.MatrixXd() F = igl.eigen.MatrixXi() T = igl.eigen.MatrixXi() tree = igl.AABB() FN = igl.eigen.MatrixXd() VN = igl.eigen.MatrixXd() EN = igl.eigen.MatrixXd() E = igl.eigen.MatrixXi() EMAP = igl.eigen.MatrixXi() max_distance = 1 slice_z = 0.5 overlay = False viewer = igl.viewer.Viewer() def append_mesh(C_vis, F_vis, V_vis, V, F, color): F_vis.conservativeResize(F_vis.rows() + F.rows(), 3) F_vis.setBottomRows(F.rows(), F + V_vis.rows()) V_vis.conservativeResize(V_vis.rows() + V.rows(), 3) V_vis.setBottomRows(V.rows(), V) C_vis.conservativeResize(C_vis.rows() + V.rows(), 3) colorM = igl.eigen.MatrixXd(V.rows(), C_vis.cols()) colorM.rowwiseSet(color) C_vis.setBottomRows(V.rows(), colorM) def update_visualization(viewer): global V, F, T, tree, FN, VN, EN, E, EMAP, max_distance, slice_z, overlay plane = igl.eigen.MatrixXd([0.0, 0.0, 1.0, -((1 - slice_z) * V.col(2).minCoeff() + slice_z * V.col(2).maxCoeff())]) V_vis = igl.eigen.MatrixXd() F_vis = igl.eigen.MatrixXi() # Extract triangle mesh slice through volume mesh and subdivide nasty triangles J = igl.eigen.MatrixXi() bary = igl.eigen.SparseMatrixd() igl.slice_tets(V, T, plane, V_vis, F_vis, J, bary) max_l = 0.03 while True: l = igl.eigen.MatrixXd() igl.edge_lengths(V_vis, F_vis, l) l /= (V_vis.colwiseMaxCoeff() - V_vis.colwiseMinCoeff()).norm() if l.maxCoeff() < max_l: break bad = l.rowwiseMaxCoeff() > max_l notbad = l.rowwiseMaxCoeff() <= max_l # TODO replace by ~ operator F_vis_bad = igl.eigen.MatrixXi() F_vis_good = igl.eigen.MatrixXi() igl.slice_mask(F_vis, bad, 1, F_vis_bad) igl.slice_mask(F_vis, notbad, 1, F_vis_good) igl.upsample(V_vis, F_vis_bad) F_vis = igl.cat(1, F_vis_bad, F_vis_good) # Compute signed distance S_vis = igl.eigen.MatrixXd() I = igl.eigen.MatrixXi() N = igl.eigen.MatrixXd() C = igl.eigen.MatrixXd() # Bunny is a watertight mesh so use pseudonormal for signing igl.signed_distance_pseudonormal(V_vis, V, F, tree, FN, VN, EN, EMAP, S_vis, I, C, N) # push to [0,1] range S_vis = 0.5 * (S_vis / max_distance) + 0.5 C_vis = igl.eigen.MatrixXd() # color without normalizing igl.parula(S_vis, False, C_vis) if overlay: append_mesh(C_vis, F_vis, V_vis, V, F, igl.eigen.MatrixXd([[0.8, 0.8, 0.8]])) viewer.data.clear() viewer.data.set_mesh(V_vis, F_vis) viewer.data.set_colors(C_vis) viewer.core.lighting_factor = overlay def key_down(viewer, key, modifier): global slice_z, overlay if key == ord(' '): overlay = not overlay elif key == ord('.'): slice_z = min(slice_z + 0.01, 0.99) elif key == ord(','): slice_z = max(slice_z - 0.01, 0.01) else: return False update_visualization(viewer) return True print("Press [space] to toggle showing surface.") print("Press '.'/',' to push back/pull forward slicing plane.") # Load mesh: (V,T) tet-mesh of convex hull, F contains original surface triangles igl.readMESH(TUTORIAL_SHARED_PATH + "bunny.mesh", V, T, F) # Call to point_mesh_squared_distance to determine bounds sqrD = igl.eigen.MatrixXd() I = igl.eigen.MatrixXi() C = igl.eigen.MatrixXd() igl.point_mesh_squared_distance(V, V, F, sqrD, I, C) max_distance = math.sqrt(sqrD.maxCoeff()) # Precompute signed distance AABB tree tree.init(V, F) # Precompute vertex, edge and face normals igl.per_face_normals(V, F, FN) igl.per_vertex_normals(V, F, igl.PER_VERTEX_NORMALS_WEIGHTING_TYPE_ANGLE, FN, VN) igl.per_edge_normals(V, F, igl.PER_EDGE_NORMALS_WEIGHTING_TYPE_UNIFORM, FN, EN, E, EMAP) # Plot the generated mesh update_visualization(viewer) viewer.callback_key_down = key_down viewer.core.show_lines = False viewer.launch()