#include #include #include #include "../python_shared.h" /// Creates Python bindings for a dynamic Eigen matrix template py::class_ bind_eigen_2(py::module &m, const char *name, py::object parent = py::object()) { typedef typename Type::Scalar Scalar; /* Many Eigen functions are templated and can't easily be referenced using a function pointer, thus a big portion of the binding code below instantiates Eigen code using small anonymous wrapper functions */ py::class_ matrix(m, name, parent); matrix /* Constructors */ .def(py::init<>()) .def(py::init()) .def("__init__", [](Type &m, Scalar f) { new (&m) Type(1, 1); m(0, 0) = f; }) .def("__init__", [](Type &m, std::vector >& b) { if (b.size() == 0) { new (&m) Type(0, 0); return; } // Size checks unsigned rows = b.size(); unsigned cols = b[0].size(); for (unsigned i=0;i& b) { if (b.size() == 0) { new (&m) Type(0, 0); return; } // Size checks unsigned rows = b.size(); unsigned cols = 1; new (&m) Type(rows, cols); m.resize(rows,cols); for (unsigned i=0;i::value()) throw std::runtime_error("Incompatible buffer format!"); if (info.ndim == 1) { new (&m) Type(info.shape[0], 1); memcpy(m.data(), info.ptr, sizeof(Scalar) * m.size()); } else if (info.ndim == 2) { if (info.strides[0] == sizeof(Scalar)) { new (&m) Type(info.shape[0], info.shape[1]); memcpy(m.data(), info.ptr, sizeof(Scalar) * m.size()); } else { new (&m) Type(info.shape[1], info.shape[0]); memcpy(m.data(), info.ptr, sizeof(Scalar) * m.size()); m.transposeInPlace(); } } else { throw std::runtime_error("Incompatible buffer dimension!"); } }) /* Size query functions */ .def("size", [](const Type &m) { return m.size(); }) .def("cols", [](const Type &m) { return m.cols(); }) .def("rows", [](const Type &m) { return m.rows(); }) .def("shape", [](const Type &m) { return std::tuple(m.rows(), m.cols()); }) /* Extract rows and colums */ .def("col", [](const Type &m, int i) { if (i<0 || i>=m.cols()) throw std::runtime_error("Column index out of bound."); return Eigen::Matrix(m.col(i)); }) .def("row", [](const Type &m, int i) { if (i<0 || i>=m.rows()) throw std::runtime_error("Row index out of bound."); return Eigen::Matrix(m.row(i)); }) /* Initialization */ .def("setZero", [](Type &m) { m.setZero(); }) .def("setIdentity", [](Type &m) { m.setIdentity(); }) .def("setConstant", [](Type &m, Scalar value) { m.setConstant(value); }) .def("setRandom", [](Type &m) { m.setRandom(); }) .def("setZero", [](Type &m, const int& r, const int& c) { m.setZero(r,c); }) .def("setIdentity", [](Type &m, const int& r, const int& c) { m.setIdentity(r,c); }) .def("setConstant", [](Type &m, const int& r, const int& c, Scalar value) { m.setConstant(r,c,value); }) .def("setRandom", [](Type &m, const int& r, const int& c) { m.setRandom(r,c); }) .def("setCol", [](Type &m, int i, const Type& v) { m.col(i) = v; }) .def("setRow", [](Type &m, int i, const Type& v) { m.row(i) = v; }) .def("setBlock", [](Type &m, int i, int j, int p, int q, const Type& v) { m.block(i,j,p,q) = v; }) .def("block", [](Type &m, int i, int j, int p, int q) { return Type(m.block(i,j,p,q)); }) .def("rightCols", [](Type &m, const int& k) { return Type(m.rightCols(k)); }) .def("leftCols", [](Type &m, const int& k) { return Type(m.leftCols(k)); }) .def("setLeftCols", [](Type &m, const int& k, const Type& v) { return Type(m.leftCols(k) = v); }) .def("setRightCols", [](Type &m, const int& k, const Type& v) { return Type(m.rightCols(k) = v); }) .def("topRows", [](Type &m, const int& k) { return Type(m.topRows(k)); }) .def("bottomRows", [](Type &m, const int& k) { return Type(m.bottomRows(k)); }) .def("setTopRows", [](Type &m, const int& k, const Type& v) { return Type(m.topRows(k) = v); }) .def("setBottomRows", [](Type &m, const int& k, const Type& v) { return Type(m.bottomRows(k) = v); }) .def("topLeftCorner", [](Type &m, const int& p, const int&q) { return Type(m.topLeftCorner(p,q)); }) .def("bottomLeftCorner", [](Type &m, const int& p, const int&q) { return Type(m.bottomLeftCorner(p,q)); }) .def("topRightCorner", [](Type &m, const int& p, const int&q) { return Type(m.topRightCorner(p,q)); }) .def("bottomRightCorner", [](Type &m, const int& p, const int&q) { return Type(m.bottomRightCorner(p,q)); }) /* Resizing */ .def("resize", [](Type &m, size_t s0, size_t s1) { m.resize(s0, s1); }) .def("resizeLike", [](Type &m, const Type &m2) { m.resizeLike(m2); }) .def("conservativeResize", [](Type &m, size_t s0, size_t s1) { m.conservativeResize(s0, s1); }) .def("mean", [](const Type &m) {return m.mean();}) .def("sum", [](const Type &m) {return m.sum();}) .def("prod", [](const Type &m) {return m.prod();}) .def("trace", [](const Type &m) {return m.trace();}) .def("norm", [](const Type &m) {return m.norm();}) .def("squaredNorm", [](const Type &m) {return m.squaredNorm();}) .def("squaredMean", [](const Type &m) {return m.array().square().mean();}) .def("minCoeff", [](const Type &m) {return m.minCoeff();} ) .def("maxCoeff", [](const Type &m) {return m.maxCoeff();} ) .def("castdouble", [](const Type &m) {return Eigen::MatrixXd(m.template cast());}) .def("castint", [](const Type &m) {return Eigen::MatrixXi(m.template cast());}) /* Component-wise operations */ .def("cwiseAbs", &Type::cwiseAbs) .def("cwiseAbs2", &Type::cwiseAbs2) .def("cwiseSqrt", &Type::cwiseSqrt) .def("cwiseInverse", &Type::cwiseInverse) .def("cwiseMin", [](const Type &m1, const Type &m2) -> Type { return m1.cwiseMin(m2); }) .def("cwiseMax", [](const Type &m1, const Type &m2) -> Type { return m1.cwiseMax(m2); }) .def("cwiseMin", [](const Type &m1, Scalar s) -> Type { return m1.cwiseMin(s); }) .def("cwiseMax", [](const Type &m1, Scalar s) -> Type { return m1.cwiseMax(s); }) .def("cwiseProduct", [](const Type &m1, const Type &m2) -> Type { return m1.cwiseProduct(m2); }) .def("cwiseQuotient", [](const Type &m1, const Type &m2) -> Type { return m1.cwiseQuotient(m2); }) /* Row and column-wise operations */ .def("rowwiseSet", [](Type &m, const Type &m2) {return Type(m.rowwise() = Eigen::Matrix(m2));} ) .def("rowwiseSum", [](const Type &m) {return Type(m.rowwise().sum());} ) .def("rowwiseProd", [](const Type &m) {return Type(m.rowwise().prod());} ) .def("rowwiseMean", [](const Type &m) {return Type(m.rowwise().mean());} ) .def("rowwiseNorm", [](const Type &m) {return Type(m.rowwise().norm());} ) .def("rowwiseNormalized", [](const Type &m) {return Type(m.rowwise().normalized());} ) .def("rowwiseReverse", [](const Type &m) {return Type(m.rowwise().reverse());} ) .def("rowwiseMinCoeff", [](const Type &m) {return Type(m.rowwise().minCoeff());} ) .def("rowwiseMaxCoeff", [](const Type &m) {return Type(m.rowwise().maxCoeff());} ) .def("colwiseSet", [](Type &m, const Type &m2) {return Type(m.colwise() = Eigen::Matrix(m2));} ) .def("colwiseSum", [](const Type &m) {return Type(m.colwise().sum());} ) .def("colwiseProd", [](const Type &m) {return Type(m.colwise().prod());} ) .def("colwiseMean", [](const Type &m) {return Type(m.colwise().mean());} ) .def("colwiseNorm", [](const Type &m) {return Type(m.colwise().norm());} ) .def("colwiseNormalized", [](const Type &m) {return Type(m.colwise().normalized());} ) .def("colwiseReverse", [](const Type &m) {return Type(m.colwise().reverse());} ) .def("colwiseMinCoeff", [](const Type &m) {return Type(m.colwise().minCoeff());} ) .def("colwiseMaxCoeff", [](const Type &m) {return Type(m.colwise().maxCoeff());} ) .def("replicate", [](const Type &m, const int& r, const int& c) {return Type(m.replicate(r,c));} ) .def("asDiagonal", [](const Type &m) {return Eigen::DiagonalMatrix(m.asDiagonal());} ) .def("sparseView", [](Type &m) { return Eigen::SparseMatrix(m.sparseView()); }) /* Arithmetic operators (def_cast forcefully casts the result back to a Type to avoid type issues with Eigen's crazy expression templates) */ .def_cast(-py::self) .def_cast(py::self + py::self) .def_cast(py::self - py::self) .def_cast(py::self * py::self) // .def_cast(py::self - Scalar()) // .def_cast(py::self * Scalar()) // .def_cast(py::self / Scalar()) .def("__mul__", [] (const Type &a, const Scalar& b) { return Eigen::Matrix(a * b); }) .def("__rmul__", [](const Type& a, const Scalar& b) { return Eigen::Matrix(b * a); }) .def("__add__", [] (const Type &a, const Scalar& b) { return Eigen::Matrix(a.array() + b); }) .def("__radd__", [](const Type& a, const Scalar& b) { return Eigen::Matrix(b + a.array()); }) .def("__sub__", [] (const Type &a, const Scalar& b) { return Eigen::Matrix(a.array() - b); }) .def("__rsub__", [](const Type& a, const Scalar& b) { return Eigen::Matrix(b - a.array()); }) .def("__div__", [] (const Type &a, const Scalar& b) { return Eigen::Matrix(a / b); }) .def("__truediv__", [] (const Type &a, const Scalar& b) { return Eigen::Matrix(a / b); }) /* Arithmetic in-place operators */ .def_cast(py::self += py::self) .def_cast(py::self -= py::self) .def_cast(py::self *= py::self) .def_cast(py::self *= Scalar()) .def_cast(py::self /= Scalar()) /* Comparison operators */ .def(py::self == py::self) .def(py::self != py::self) .def("__lt__", [] (const Type &a, const Scalar& b) -> Eigen::Matrix { return Eigen::Matrix(a.array() < b); }) .def("__gt__", [] (const Type &a, const Scalar& b) -> Eigen::Matrix { return Eigen::Matrix(a.array() > b); }) .def("__le__", [] (const Type &a, const Scalar& b) -> Eigen::Matrix { return Eigen::Matrix(a.array() <= b); }) .def("__ge__", [] (const Type &a, const Scalar& b) -> Eigen::Matrix { return Eigen::Matrix(a.array() >= b); }) .def("transposeInPlace", [](Type &m) { m.transposeInPlace(); }) /* Other transformations */ .def("transpose", [](Type &m) -> Type { return m.transpose(); }) /* Python protocol implementations */ .def("__repr__", [](const Type &v) { std::ostringstream oss; oss << v; return oss.str(); }) .def("__getitem__", [](const Type &m, std::pair i) { if (i.first >= (size_t) m.rows() || i.second >= (size_t) m.cols()) throw py::index_error(); return m(i.first, i.second); }) .def("__setitem__", [](Type &m, std::pair i, Scalar v) { if (i.first >= (size_t) m.rows() || i.second >= (size_t) m.cols()) throw py::index_error(); m(i.first, i.second) = v; }) .def("__getitem__", [](const Type &m, size_t i) { if (i >= (size_t) m.size()) throw py::index_error(); return m(i); }) .def("__setitem__", [](Type &m, size_t i, Scalar v) { if (i >= (size_t) m.size()) throw py::index_error(); m(i) = v; }) /* Buffer access for interacting with NumPy */ .def_buffer([](Type &m) -> py::buffer_info { return py::buffer_info( m.data(), /* Pointer to buffer */ sizeof(Scalar), /* Size of one scalar */ /* Python struct-style format descriptor */ py::format_descriptor::value(), 2, /* Number of dimensions */ { (size_t) m.rows(), /* Buffer dimensions */ (size_t) m.cols() }, { sizeof(Scalar), /* Strides (in bytes) for each index */ sizeof(Scalar) * m.rows() } ); }) /* Static initializers */ .def_static("Zero", [](size_t n, size_t m) { return Type(Type::Zero(n, m)); }) .def_static("Random", [](size_t n, size_t m) { return Type(Type::Random(n, m)); }) .def_static("Ones", [](size_t n, size_t m) { return Type(Type::Ones(n, m)); }) .def_static("Constant", [](size_t n, size_t m, Scalar value) { return Type(Type::Constant(n, m, value)); }) .def_static("Identity", [](size_t n, size_t m) { return Type(Type::Identity(n, m)); }) .def("MapMatrix", [](const Type& m, size_t r, size_t c) { return Eigen::Matrix(Eigen::Map>(m.data(),r,c)); }) .def("copy", [](const Type &m) { return Type(m); }) ; return matrix; } /// Creates Python bindings for a dynamic Eigen sparse order-2 tensor (i.e. a matrix) template py::class_ bind_eigen_sparse_2(py::module &m, const char *name, py::object parent = py::object()) { typedef typename Type::Scalar Scalar; /* Many Eigen functions are templated and can't easily be referenced using a function pointer, thus a big portion of the binding code below instantiates Eigen code using small anonymous wrapper functions */ py::class_ matrix(m, name, parent); matrix /* Constructors */ .def(py::init<>()) .def(py::init()) // .def("__init__", [](Type &m, Scalar f) { // new (&m) Type(1, 1); // m(0, 0) = f; // }) // .def("__init__", [](Type &m, py::buffer b) { // py::buffer_info info = b.request(); // if (info.format != py::format_descriptor::value()) // throw std::runtime_error("Incompatible buffer format!"); // if (info.ndim == 1) { // new (&m) Type(info.shape[0], 1); // memcpy(m.data(), info.ptr, sizeof(Scalar) * m.size()); // } else if (info.ndim == 2) { // if (info.strides[0] == sizeof(Scalar)) { // new (&m) Type(info.shape[0], info.shape[1]); // memcpy(m.data(), info.ptr, sizeof(Scalar) * m.size()); // } else { // new (&m) Type(info.shape[1], info.shape[0]); // memcpy(m.data(), info.ptr, sizeof(Scalar) * m.size()); // m.transposeInPlace(); // } // } else { // throw std::runtime_error("Incompatible buffer dimension!"); // } // }) /* Size query functions */ .def("size", [](const Type &m) { return m.size(); }) .def("cols", [](const Type &m) { return m.cols(); }) .def("rows", [](const Type &m) { return m.rows(); }) .def("shape", [](const Type &m) { return std::tuple(m.rows(), m.cols()); }) /* Initialization */ .def("setZero", [](Type &m) { m.setZero(); }) .def("setIdentity", [](Type &m) { m.setIdentity(); }) .def("transpose", [](Type &m) { return Type(m.transpose()); }) .def("norm", [](Type &m) { return m.norm(); }) /* Resizing */ // .def("resize", [](Type &m, size_t s0, size_t s1) { m.resize(s0, s1); }) // .def("resizeLike", [](Type &m, const Type &m2) { m.resizeLike(m2); }) // .def("conservativeResize", [](Type &m, size_t s0, size_t s1) { m.conservativeResize(s0, s1); }) /* Component-wise operations */ // .def("cwiseAbs", &Type::cwiseAbs) // .def("cwiseAbs2", &Type::cwiseAbs2) // .def("cwiseSqrt", &Type::cwiseSqrt) // .def("cwiseInverse", &Type::cwiseInverse) // .def("cwiseMin", [](const Type &m1, const Type &m2) -> Type { return m1.cwiseMin(m2); }) // .def("cwiseMax", [](const Type &m1, const Type &m2) -> Type { return m1.cwiseMax(m2); }) // .def("cwiseMin", [](const Type &m1, Scalar s) -> Type { return m1.cwiseMin(s); }) // .def("cwiseMax", [](const Type &m1, Scalar s) -> Type { return m1.cwiseMax(s); }) // .def("cwiseProduct", [](const Type &m1, const Type &m2) -> Type { return m1.cwiseProduct(m2); }) // .def("cwiseQuotient", [](const Type &m1, const Type &m2) -> Type { return m1.cwiseQuotient(m2); }) /* Arithmetic operators (def_cast forcefully casts the result back to a Type to avoid type issues with Eigen's crazy expression templates) */ .def_cast(-py::self) .def_cast(py::self + py::self) .def_cast(py::self - py::self) .def_cast(py::self * py::self) .def_cast(py::self * Scalar()) .def_cast(Scalar() * py::self) // Special case, sparse * dense produces a dense matrix // .def("__mul__", [] // (const Type &a, const Scalar& b) // { // return Type(a * b); // }) // .def("__rmul__", [](const Type& a, const Scalar& b) // { // return Type(b * a); // }) .def("__mul__", [] (const Type &a, const Eigen::Matrix& b) { return Eigen::Matrix(a * b); }) .def("__rmul__", [](const Type& a, const Eigen::Matrix& b) { return Eigen::Matrix(b * a); }) .def("__mul__", [] (const Type &a, const Eigen::DiagonalMatrix& b) { return Type(a * b); }) .def("__rmul__", [](const Type& a, const Eigen::DiagonalMatrix& b) { return Type(b * a); }) //.def(py::self * Eigen::Matrix()) // .def_cast(py::self / Scalar()) /* Arithmetic in-place operators */ // .def_cast(py::self += py::self) // .def_cast(py::self -= py::self) // .def_cast(py::self *= py::self) // .def_cast(py::self *= Scalar()) // .def_cast(py::self /= Scalar()) /* Comparison operators */ // .def(py::self == py::self) // .def(py::self != py::self) // .def("transposeInPlace", [](Type &m) { m.transposeInPlace(); }) // /* Other transformations */ // .def("transpose", [](Type &m) -> Type { return m.transpose(); }) /* Python protocol implementations */ .def("__repr__", [](const Type &v) { std::ostringstream oss; oss << v; return oss.str(); }) /* Static initializers */ // .def_static("Zero", [](size_t n, size_t m) { return Type(Type::Zero(n, m)); }) // .def_static("Ones", [](size_t n, size_t m) { return Type(Type::Ones(n, m)); }) // .def_static("Constant", [](size_t n, size_t m, Scalar value) { return Type(Type::Constant(n, m, value)); }) // .def_static("Identity", [](size_t n, size_t m) { return Type(Type::Identity(n, m)); }) .def("toCOO",[](const Type& m) { Eigen::Matrix t(m.nonZeros(),3); int count = 0; for (int k=0; k& t, int rows, int cols) { typedef Eigen::Triplet T; std::vector tripletList; tripletList.reserve(t.rows()); for(unsigned i=0;i(m.diagonal());} ) ; return matrix; } /// Creates Python bindings for a diagonal Eigen sparse order-2 tensor (i.e. a matrix) template py::class_ bind_eigen_diagonal_2(py::module &m, const char *name, py::object parent = py::object()) { typedef typename Type::Scalar Scalar; /* Many Eigen functions are templated and can't easily be referenced using a function pointer, thus a big portion of the binding code below instantiates Eigen code using small anonymous wrapper functions */ py::class_ matrix(m, name, parent); matrix /* Constructors */ .def(py::init<>()) //.def(py::init()) /* Size query functions */ .def("size", [](const Type &m) { return m.size(); }) .def("cols", [](const Type &m) { return m.cols(); }) .def("rows", [](const Type &m) { return m.rows(); }) .def("shape", [](const Type &m) { return std::tuple(m.rows(), m.cols()); }) /* Initialization */ .def("setZero", [](Type &m) { m.setZero(); }) .def("setIdentity", [](Type &m) { m.setIdentity(); }) /* Arithmetic operators (def_cast forcefully casts the result back to a Type to avoid type issues with Eigen's crazy expression templates) */ // .def_cast(-py::self) // .def_cast(py::self + py::self) // .def_cast(py::self - py::self) // .def_cast(py::self * py::self) .def_cast(py::self * Scalar()) .def_cast(Scalar() * py::self) // // Special case, sparse * dense produces a dense matrix // .def("__mul__", [] // (const Type &a, const Eigen::Matrix& b) // { // return Eigen::Matrix(a * b); // }) // .def("__rmul__", [](const Type& a, const Eigen::Matrix& b) // { // return Eigen::Matrix(b * a); // }) .def("__mul__", [] (const Type &a, const Eigen::Matrix& b) { return Eigen::Matrix(a * b); }) .def("__rmul__", [](const Type& a, const Eigen::Matrix& b) { return Eigen::Matrix(b * a); }) .def("__mul__", [] (const Type &a, const Eigen::SparseMatrix& b) { return Eigen::SparseMatrix(a * b); }) .def("__rmul__", [](const Type& a, const Eigen::SparseMatrix& b) { return Eigen::SparseMatrix(b * a); }) /* Python protocol implementations */ .def("__repr__", [](const Type &/*v*/) { std::ostringstream oss; oss << "<< operator undefined for diagonal matrices"; return oss.str(); }) /* Other transformations */ ; return matrix; } void python_export_vector(py::module &m) { py::module me = m.def_submodule( "eigen", "Wrappers for Eigen types"); /* Bindings for VectorXd */ // bind_eigen_1 (me, "VectorXd"); // py::implicitly_convertible(); // py::implicitly_convertible(); /* Bindings for VectorXi */ // bind_eigen_1 (me, "VectorXi"); // py::implicitly_convertible(); // py::implicitly_convertible(); /* Bindings for MatrixXd */ bind_eigen_2 (me, "MatrixXd"); //py::implicitly_convertible(); //py::implicitly_convertible(); /* Bindings for MatrixXi */ bind_eigen_2 (me, "MatrixXi"); // py::implicitly_convertible(); //py::implicitly_convertible(); /* Bindings for MatrixXb */ bind_eigen_2 > (me, "MatrixXb"); /* Bindings for MatrixXuc */ bind_eigen_2 > (me, "MatrixXuc"); // py::implicitly_convertible >(); // py::implicitly_convertible >(); // /* Bindings for Vector3d */ // auto vector3 = bind_eigen_1_3(me, "Vector3d"); // vector3 // .def("norm", [](const Eigen::Vector3d &v) { return v.norm(); }) // .def("squaredNorm", [](const Eigen::Vector3d &v) { return v.squaredNorm(); }) // .def("normalize", [](Eigen::Vector3d &v) { v.normalize(); }) // .def("normalized", [](const Eigen::Vector3d &v) -> Eigen::Vector3d { return v.normalized(); }) // .def("dot", [](const Eigen::Vector3d &v1, const Eigen::Vector3d &v2) { return v1.dot(v2); }) // .def("cross", [](const Eigen::Vector3d &v1, const Eigen::Vector3d &v2) -> Eigen::Vector3d { return v1.cross(v2); }) // .def_property("x", [](const Eigen::Vector3d &v) -> double { return v.x(); }, // [](Eigen::Vector3d &v, double x) { v.x() = x; }, "X coordinate") // .def_property("y", [](const Eigen::Vector3d &v) -> double { return v.y(); }, // [](Eigen::Vector3d &v, double y) { v.y() = y; }, "Y coordinate") // .def_property("z", [](const Eigen::Vector3d &v) -> double { return v.z(); }, // [](Eigen::Vector3d &v, double z) { v.z() = z; }, "Z coordinate"); // // py::implicitly_convertible(); // py::implicitly_convertible(); /* Bindings for SparseMatrix */ bind_eigen_sparse_2< Eigen::SparseMatrix > (me, "SparseMatrixd"); /* Bindings for SparseMatrix */ bind_eigen_sparse_2< Eigen::SparseMatrix > (me, "SparseMatrixi"); /* Bindings for DiagonalMatrix */ bind_eigen_diagonal_2< Eigen::DiagonalMatrix > (me, "DiagonalMatrixd"); /* Bindings for DiagonalMatrix */ bind_eigen_diagonal_2< Eigen::DiagonalMatrix > (me, "DiagonalMatrixi"); /* Bindings for SimplicialLLT*/ py::class_ >> simpliciallltsparse(me, "SimplicialLLTsparse"); simpliciallltsparse .def(py::init<>()) .def(py::init>()) .def("info",[](const Eigen::SimplicialLLT >& s) { if (s.info() == Eigen::Success) return "Success"; else return "Numerical Issue"; }) .def("analyzePattern",[](Eigen::SimplicialLLT >& s, const Eigen::SparseMatrix& a) { return s.analyzePattern(a); }) .def("factorize",[](Eigen::SimplicialLLT >& s, const Eigen::SparseMatrix& a) { return s.factorize(a); }) .def("solve",[](const Eigen::SimplicialLLT >& s, const Eigen::MatrixXd& rhs) { return Eigen::MatrixXd(s.solve(rhs)); }) ; py::class_ affine3d(me, "Affine3d"); affine3d .def(py::init<>()) .def("setIdentity",[](Eigen::Affine3d& a){ return a.setIdentity(); }) .def("rotate",[](Eigen::Affine3d& a, double angle, Eigen::MatrixXd axis) { assert_is_Vector3("axis", axis); return a.rotate(Eigen::AngleAxisd(angle, Eigen::Vector3d(axis))); }) .def("translate",[](Eigen::Affine3d& a, Eigen::MatrixXd offset) { assert_is_Vector3("offset", offset); return a.translate(Eigen::Vector3d(offset)); }) .def("matrix", [](Eigen::Affine3d& a) -> Eigen::MatrixXd { return Eigen::MatrixXd(a.matrix()); }) ; /* Bindings for Quaterniond*/ //py::class_ quaterniond(me, "Quaterniond"); // // quaterniond // .def(py::init<>()) // .def(py::init()) // ; }