// This file is part of libigl, a simple c++ geometry processing library. // // Copyright (C) 2015 Alec Jacobson <alecjacobson@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla Public License // v. 2.0. If a copy of the MPL was not distributed with this file, You can // obtain one at http://mozilla.org/MPL/2.0/. #include "hausdorff.h" #include "point_mesh_squared_distance.h" template < typename DerivedVA, typename DerivedFA, typename DerivedVB, typename DerivedFB, typename Scalar> IGL_INLINE void igl::hausdorff( const Eigen::PlainObjectBase<DerivedVA> & VA, const Eigen::PlainObjectBase<DerivedFA> & FA, const Eigen::PlainObjectBase<DerivedVB> & VB, const Eigen::PlainObjectBase<DerivedFB> & FB, Scalar & d) { using namespace Eigen; assert(VA.cols() == 3 && "VA should contain 3d points"); assert(FA.cols() == 3 && "FA should contain triangles"); assert(VB.cols() == 3 && "VB should contain 3d points"); assert(FB.cols() == 3 && "FB should contain triangles"); Matrix<Scalar,Dynamic,1> sqr_DBA,sqr_DAB; Matrix<typename DerivedVA::Index,Dynamic,1> I; Matrix<typename DerivedVA::Scalar,Dynamic,3> C; point_mesh_squared_distance(VB,VA,FA,sqr_DBA,I,C); point_mesh_squared_distance(VA,VB,FB,sqr_DAB,I,C); const Scalar dba = sqr_DBA.maxCoeff(); const Scalar dab = sqr_DAB.maxCoeff(); d = sqrt(std::max(dba,dab)); } template < typename DerivedV, typename Scalar> IGL_INLINE void igl::hausdorff( const Eigen::MatrixBase<DerivedV>& V, const std::function<Scalar(const Scalar &,const Scalar &, const Scalar &)> & dist_to_B, Scalar & l, Scalar & u) { // e 3-long vector of opposite edge lengths Eigen::Matrix<typename DerivedV::Scalar,1,3> e; // Maximum edge length Scalar e_max = 0; for(int i=0;i<3;i++) { e(i) = (V.row((i+1)%3)-V.row((i+2)%3)).norm(); e_max = std::max(e_max,e(i)); } // Semiperimeter const Scalar s = (e(0)+e(1)+e(2))*0.5; // Area const Scalar A = sqrt(s*(s-e(0))*(s-e(1))*(s-e(2))); // Circumradius const Scalar R = e(0)*e(1)*e(2)/(4.*A); // inradius const Scalar r = A/s; // Initialize lower bound to ∞ l = std::numeric_limits<Scalar>::infinity(); // d 3-long vector of distance from each corner to B Eigen::Matrix<typename DerivedV::Scalar,1,3> d; Scalar u1 = std::numeric_limits<Scalar>::infinity(); Scalar u2 = 0; for(int i=0;i<3;i++) { d(i) = dist_to_B(V(i,0),V(i,1),V(i,2)); // Lower bound is simply the max over vertex distances l = std::max(d(i),l); // u1 is the minimum of corner distances + maximum adjacent edge u1 = std::min(u1,d(i) + std::max(e((i+1)%3),e((i+2)%3))); // u2 first takes the maximum over corner distances u2 = std::max(u2,d(i)); } // u2 is the distance from the circumcenter/midpoint of obtuse edge plus the // largest corner distance u2 += (s-r>2.*R ? R : 0.5*e_max); u = std::min(u1,u2); } #ifdef IGL_STATIC_LIBRARY template void igl::hausdorff<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, double>(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, double&); template void igl::hausdorff<Eigen::Matrix<double, -1, -1, 0, -1, -1>, double>(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, std::function<double (double const&, double const&, double const&)> const&, double&, double&); #endif