from __future__ import print_function # Add the igl library to the modules search path import sys, os sys.path.insert(0, os.getcwd() + "/../") import pyigl as igl from iglhelpers import e2p import math TUTORIAL_SHARED_PATH = "../../tutorial/shared/" global V, F, T, tree, FN, VN, EN, E, EMAP, max_distance, slice_z, overlay V = igl.eigen.MatrixXd() F = igl.eigen.MatrixXi() T = igl.eigen.MatrixXi() tree = igl.AABB() FN = igl.eigen.MatrixXd() VN = igl.eigen.MatrixXd() EN = igl.eigen.MatrixXd() E = igl.eigen.MatrixXi() EMAP = igl.eigen.MatrixXi() max_distance = 1 slice_z = 0.5 overlay = False viewer = igl.viewer.Viewer() def update_visualization(viewer): global V, F, T, tree, FN, VN, EN, E, EMAP, max_distance, slice_z, overlay plane = igl.eigen.MatrixXd([0.0, 0.0, 1.0, -((1-slice_z) * V.col(2).minCoeff() + slice_z * V.col(2).maxCoeff())]) V_vis = igl.eigen.MatrixXd() F_vis = igl.eigen.MatrixXi() # Extract triangle mesh slice through volume mesh and subdivide nasty triangles J = igl.eigen.MatrixXi() bary = igl.eigen.SparseMatrixd() igl.slice_tets(V, T, plane, V_vis, F_vis, J, bary) max_l = 0.03 # while True: # l = igl.eigen.MatrixXd() # igl.edge_lengths(V_vis, F_vis, l) # l /= (V_vis.colwise().maxCoeff() - V_vis.colwise().minCoeff()).norm() # # if l.maxCoeff() < max_l: # break # # bad = e2p(l.rowwiseMaxCoeff()) # bad = bad > max_l # F_vis_bad = igl.eigen.MatrixXi() # F_vis_good = igl.eigen.MatrixXi() # igl::slice_mask(F_vis, bad, 1, F_vis_bad); # igl::slice_mask(F_vis, (bad!=true).eval(), 1, F_vis_good); # igl.upsample(V_vis, F_vis_bad) # F_vis = igl.cat(1, F_vis_bad, F_vis_good) # #Compute signed distance # S_vis = igl.eigen.MatrixXd() # I = igl.eigen.MatrixXi() # N = igl.eigen.MatrixXd() # C = igl.eigen.MatrixXd() # # Bunny is a watertight mesh so use pseudonormal for signing # igl.signed_distance_pseudonormal(V_vis, V, F, tree, FN, VN, EN, EMAP, S_vis, I, C, N) # # push to [0,1] range # S_vis.array() = 0.5*(S_vis.array()/max_distance)+0.5; # C_vis = igl.eigen.MatrixXi() # # color without normalizing # igl.parula(S_vis, False, C_vis) # const auto & append_mesh = [&C_vis,&F_vis,&V_vis](const Eigen::MatrixXd & V, const Eigen::MatrixXi & F, const RowVector3d & color) # F_vis.conservativeResize(F_vis.rows() + F.rows(), 3) # F_vis.bottomRows(F.rows()) = F.array() + V_vis.rows() # V_vis.conservativeResize(V_vis.rows() + V.rows(), 3) # V_vis.bottomRows(V.rows()) = V # C_vis.conservativeResize(C_vis.rows() + V.rows(), 3) # C_vis.bottomRows(V.rows()).rowwise() = color # if overlay: # append_mesh(V, F, RowVector3d(0.8,0.8,0.8)) viewer.data.clear() viewer.data.set_mesh(V_vis, F_vis) # viewer.data.set_colors(C_vis) viewer.core.lighting_factor = overlay def key_down(viewer, key, modifier): global slice_z, overlay if key == ord(' '): overlay = not overlay elif key == ord('.'): slice_z = min(slice_z + 0.01, 0.99) elif key == ord(','): slice_z = max(slice_z - 0.01, 0.01) else: return False update_visualization(viewer) return True print("Press [space] to toggle showing surface.") print("Press '.'/',' to push back/pull forward slicing plane.") #Load mesh: (V,T) tet-mesh of convex hull, F contains original surface triangles igl.readMESH(TUTORIAL_SHARED_PATH + "bunny.mesh", V, T, F); #Call to point_mesh_squared_distance to determine bounds sqrD = igl.eigen.MatrixXd() I = igl.eigen.MatrixXi() C = igl.eigen.MatrixXd() igl.point_mesh_squared_distance(V, V, F, sqrD, I, C) max_distance = math.sqrt(sqrD.maxCoeff()) #Precompute signed distance AABB tree tree.init(V, F) #Precompute vertex, edge and face normals igl.per_face_normals(V, F, FN) igl.per_vertex_normals(V, F, igl.PER_VERTEX_NORMALS_WEIGHTING_TYPE_ANGLE, FN, VN) igl.per_edge_normals(V, F, igl.PER_EDGE_NORMALS_WEIGHTING_TYPE_UNIFORM, FN, EN, E, EMAP) #Plot the generated mesh update_visualization(viewer); viewer.callback_key_down = key_down viewer.core.show_lines = False viewer.launch()