// This file is part of libigl, a simple c++ geometry processing library. // // Copyright (C) 2014 Alec Jacobson <alecjacobson@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla Public License // v. 2.0. If a copy of the MPL was not distributed with this file, You can // obtain one at http://mozilla.org/MPL/2.0/. #include "dihedral_angles.h" #include "edge_lengths.h" #include "face_areas.h" #include <cassert> template < typename DerivedV, typename DerivedT, typename Derivedtheta, typename Derivedcos_theta> IGL_INLINE void igl::dihedral_angles( const Eigen::PlainObjectBase<DerivedV>& V, const Eigen::PlainObjectBase<DerivedT>& T, Eigen::PlainObjectBase<Derivedtheta>& theta, Eigen::PlainObjectBase<Derivedcos_theta>& cos_theta) { using namespace Eigen; assert(T.cols() == 4); Matrix<typename Derivedtheta::Scalar,Dynamic,6> l; edge_lengths(V,T,l); Matrix<typename Derivedtheta::Scalar,Dynamic,4> s; face_areas(l,s); return dihedral_angles_intrinsic(l,s,theta,cos_theta); } template < typename DerivedL, typename DerivedA, typename Derivedtheta, typename Derivedcos_theta> IGL_INLINE void igl::dihedral_angles_intrinsic( const Eigen::PlainObjectBase<DerivedL>& L, const Eigen::PlainObjectBase<DerivedA>& A, Eigen::PlainObjectBase<Derivedtheta>& theta, Eigen::PlainObjectBase<Derivedcos_theta>& cos_theta) { using namespace Eigen; const int m = L.rows(); assert(m == A.rows()); // Law of cosines // http://math.stackexchange.com/a/49340/35376 Matrix<typename Derivedtheta::Scalar,Dynamic,6> H_sqr(m,6); H_sqr.col(0) = (1./16.) * (4. * L.col(3).array().square() * L.col(0).array().square() - ((L.col(1).array().square() + L.col(4).array().square()) - (L.col(2).array().square() + L.col(5).array().square())).square()); H_sqr.col(1) = (1./16.) * (4. * L.col(4).array().square() * L.col(1).array().square() - ((L.col(2).array().square() + L.col(5).array().square()) - (L.col(3).array().square() + L.col(0).array().square())).square()); H_sqr.col(2) = (1./16.) * (4. * L.col(5).array().square() * L.col(2).array().square() - ((L.col(3).array().square() + L.col(0).array().square()) - (L.col(4).array().square() + L.col(1).array().square())).square()); H_sqr.col(3) = (1./16.) * (4. * L.col(0).array().square() * L.col(3).array().square() - ((L.col(4).array().square() + L.col(1).array().square()) - (L.col(5).array().square() + L.col(2).array().square())).square()); H_sqr.col(4) = (1./16.) * (4. * L.col(1).array().square() * L.col(4).array().square() - ((L.col(5).array().square() + L.col(2).array().square()) - (L.col(0).array().square() + L.col(3).array().square())).square()); H_sqr.col(5) = (1./16.) * (4. * L.col(2).array().square() * L.col(5).array().square() - ((L.col(0).array().square() + L.col(3).array().square()) - (L.col(1).array().square() + L.col(4).array().square())).square()); cos_theta.resize(m,6); cos_theta.col(0) = (H_sqr.col(0).array() - A.col(1).array().square() - A.col(2).array().square()).array() / (-2.*A.col(1).array() * A.col(2).array()); cos_theta.col(1) = (H_sqr.col(1).array() - A.col(2).array().square() - A.col(0).array().square()).array() / (-2.*A.col(2).array() * A.col(0).array()); cos_theta.col(2) = (H_sqr.col(2).array() - A.col(0).array().square() - A.col(1).array().square()).array() / (-2.*A.col(0).array() * A.col(1).array()); cos_theta.col(3) = (H_sqr.col(3).array() - A.col(3).array().square() - A.col(0).array().square()).array() / (-2.*A.col(3).array() * A.col(0).array()); cos_theta.col(4) = (H_sqr.col(4).array() - A.col(3).array().square() - A.col(1).array().square()).array() / (-2.*A.col(3).array() * A.col(1).array()); cos_theta.col(5) = (H_sqr.col(5).array() - A.col(3).array().square() - A.col(2).array().square()).array() / (-2.*A.col(3).array() * A.col(2).array()); theta = cos_theta.array().acos(); cos_theta.resize(m,6); } #ifdef IGL_STATIC_LIBRARY // Explicit template instantiation template void igl::dihedral_angles_intrinsic< Eigen::Matrix<double, -1, 6, 0, -1, 6>, Eigen::Matrix<double, -1, 4, 0, -1, 4>, Eigen::Matrix<double, -1, 6, 0, -1, 6>, Eigen::Matrix<double, -1, 6, 0, -1, 6> >(const Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 6, 0, -1, 6> >&, const Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 4, 0, -1, 4> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 6, 0, -1, 6> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 6, 0, -1, 6> >&); template void igl::dihedral_angles<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&); #endif