// This file is part of libigl, a simple c++ geometry processing library. // // Copyright (C) 2013 Alec Jacobson // // This Source Code Form is subject to the terms of the Mozilla Public License // v. 2.0. If a copy of the MPL was not distributed with this file, You can // obtain one at http://mozilla.org/MPL/2.0/. #ifndef IGL_UNIFORMLY_SAMPLE_TWO_MANIFOLD_H #define IGL_UNIFORMLY_SAMPLE_TWO_MANIFOLD_H #include "igl_inline.h" #include namespace igl { // UNIFORMLY_SAMPLE_TWO_MANIFOLD Attempt to sample a mesh uniformly with // k-points by furthest point relaxation as described in "Fast Automatic // Skinning Transformations" [Jacobson et al. 12] Section 3.3. The input is // not expected to be a typical 3D triangle mesh (e.g., [V,F]), instead each // vertex is embedded in a high dimensional unit-hypercude ("weight space") // defined by W, with triangles given by F. This algorithm will first conduct // furthest point sampling from the set of vertices and then attempt to relax // the sampled points along the surface of the high-dimensional triangle mesh // (i.e., the output points may be in the middle of triangles, not just at // vertices). An additional "push" factor will repel samples away from the // corners of the hypercube. // // Inputs: // W #W by dim positions of mesh in weight space // F #F by 3 indices of triangles // k number of samples // push factor by which corners should be pushed away // Outputs // WS k by dim locations in weight space // // See also: // random_points_on_mesh // IGL_INLINE void uniformly_sample_two_manifold( const Eigen::MatrixXd & W, const Eigen::MatrixXi & F, const int k, const double push, Eigen::MatrixXd & WS); // Find uniform sampling up to placing samples on mesh vertices IGL_INLINE void uniformly_sample_two_manifold_at_vertices( const Eigen::MatrixXd & OW, const int k, const double push, Eigen::VectorXi & S); } #ifndef IGL_STATIC_LIBRARY # include "uniformly_sample_two_manifold.cpp" #endif #endif