min_quad_dense.h 2.5 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192
  1. #ifndef IGL_MIN_QUAD_DENSE_H
  2. #define IGL_MIN_QUAD_DENSE_H
  3. #include <Eigen/Core>
  4. #include <Eigen/Dense>
  5. //// debug
  6. //#include <matlabinterface.h>
  7. //Engine *g_pEngine;
  8. namespace igl
  9. {
  10. // MIN_QUAD_WITH_FIXED Minimize quadratic energy Z'*A*Z + Z'*B + C
  11. // subject to linear constraints Aeq*Z = Beq
  12. //
  13. // Templates:
  14. // T should be a eigen matrix primitive type like float or double
  15. // Inputs:
  16. // A n by n matrix of quadratic coefficients
  17. // B n by 1 column of linear coefficients
  18. // Aeq m by n list of linear equality constraint coefficients
  19. // Beq m by 1 list of linear equality constraint constant values
  20. // Outputs:
  21. // S n by (n + m) "solve" matrix, such that S*[B', Beq'] is a solution
  22. // Returns true on success, false on error
  23. template <typename T>
  24. void min_quad_dense_precompute(
  25. const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& A,
  26. const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& Aeq,
  27. Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& S)
  28. {
  29. typedef Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> Mat;
  30. const T treshold = 10e-4;
  31. const int n = A.rows();
  32. assert(A.cols() == n);
  33. const int m = Aeq.rows();
  34. assert(Aeq.cols() == n);
  35. // Lagrange multipliers method:
  36. Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> LM(n + m, n + m);
  37. LM.block(0, 0, n, n) = A;
  38. LM.block(0, n, n, m) = Aeq.transpose();
  39. LM.block(n, 0, m, n) = Aeq;
  40. LM.block(n, n, m, m).setZero();
  41. typedef Eigen::Matrix<T, Eigen::Dynamic, 1> Vec;
  42. Vec singValues;
  43. Eigen::JacobiSVD<Mat> svd;
  44. svd.compute(LM, Eigen::ComputeFullU | Eigen::ComputeFullV );
  45. const Mat& u = svd.matrixU();
  46. const Mat& v = svd.matrixV();
  47. const Vec& singVals = svd.singularValues();
  48. Vec pi_singVals(n + m);
  49. int zeroed = 0;
  50. for (int i=0; i<n + m; i++)
  51. {
  52. T sv = singVals(i, 0);
  53. assert(sv >= 0);
  54. if (sv > treshold) pi_singVals(i, 0) = T(1) / sv;
  55. else
  56. {
  57. pi_singVals(i, 0) = T(0);
  58. zeroed++;
  59. }
  60. }
  61. printf("min_quad_dense_precompute: %i singular values zeroed\n", zeroed);
  62. Eigen::DiagonalMatrix<T, Eigen::Dynamic> pi_diag(pi_singVals);
  63. Mat LMpinv = v * pi_diag * u.transpose();
  64. S = LMpinv.block(0, 0, n, n + m);
  65. //// debug:
  66. //mlinit(&g_pEngine);
  67. //
  68. //mlsetmatrix(&g_pEngine, "A", A);
  69. //mlsetmatrix(&g_pEngine, "Aeq", Aeq);
  70. //mlsetmatrix(&g_pEngine, "LM", LM);
  71. //mlsetmatrix(&g_pEngine, "u", u);
  72. //mlsetmatrix(&g_pEngine, "v", v);
  73. //MatrixXd svMat = singVals;
  74. //mlsetmatrix(&g_pEngine, "singVals", svMat);
  75. //mlsetmatrix(&g_pEngine, "LMpinv", LMpinv);
  76. //mlsetmatrix(&g_pEngine, "S", S);
  77. //int hu = 1;
  78. }
  79. }
  80. #endif