1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009 |
- // This file is part of libigl, a simple c++ geometry processing library.
- //
- // Copyright (C) 2016 Michael Rabinovich
- //
- // This Source Code Form is subject to the terms of the Mozilla Public License
- // v. 2.0. If a copy of the MPL was not distributed with this file, You can
- // obtain one at http://mozilla.org/MPL/2.0/.
- #include "slim.h"
- #include "boundary_loop.h"
- #include "cotmatrix.h"
- #include "edge_lengths.h"
- #include "grad.h"
- #include "local_basis.h"
- #include "repdiag.h"
- #include "vector_area_matrix.h"
- #include "arap.h"
- #include "cat.h"
- #include "doublearea.h"
- #include "grad.h"
- #include "local_basis.h"
- #include "per_face_normals.h"
- #include "slice_into.h"
- #include "volume.h"
- #include "polar_svd.h"
- #include "flip_avoiding_line_search.h"
- #include <iostream>
- #include <map>
- #include <set>
- #include <vector>
- #include <Eigen/IterativeLinearSolvers>
- #include <Eigen/SparseCholesky>
- #include <Eigen/IterativeLinearSolvers>
- #include <igl/Timer.h>
- #include <igl/sparse_fast.h>
- #include <igl/sparse_AtA_fast.h>
- #ifdef CHOLMOD
- #include <Eigen/CholmodSupport>
- #endif
- namespace igl
- {
- namespace slim
- {
- // Definitions of internal functions
- IGL_INLINE void compute_surface_gradient_matrix(const Eigen::MatrixXd &V, const Eigen::MatrixXi &F,
- const Eigen::MatrixXd &F1, const Eigen::MatrixXd &F2,
- Eigen::SparseMatrix<double> &D1, Eigen::SparseMatrix<double> &D2);
- IGL_INLINE void buildA(igl::SLIMData& s, Eigen::SparseMatrix<double> &A);
- IGL_INLINE void buildRhs(igl::SLIMData& s, const Eigen::SparseMatrix<double> &At);
- IGL_INLINE void add_soft_constraints(igl::SLIMData& s, Eigen::SparseMatrix<double> &L);
- IGL_INLINE double compute_energy(igl::SLIMData& s, Eigen::MatrixXd &V_new);
- IGL_INLINE double compute_soft_const_energy(igl::SLIMData& s,
- const Eigen::MatrixXd &V,
- const Eigen::MatrixXi &F,
- Eigen::MatrixXd &V_o);
- IGL_INLINE double compute_energy_with_jacobians(igl::SLIMData& s,
- const Eigen::MatrixXd &V,
- const Eigen::MatrixXi &F, const Eigen::MatrixXd &Ji,
- Eigen::MatrixXd &uv, Eigen::VectorXd &areas);
- IGL_INLINE void solve_weighted_arap(igl::SLIMData& s,
- const Eigen::MatrixXd &V,
- const Eigen::MatrixXi &F,
- Eigen::MatrixXd &uv,
- Eigen::VectorXi &soft_b_p,
- Eigen::MatrixXd &soft_bc_p);
- IGL_INLINE void update_weights_and_closest_rotations( igl::SLIMData& s,
- const Eigen::MatrixXd &V,
- const Eigen::MatrixXi &F,
- Eigen::MatrixXd &uv);
- IGL_INLINE void compute_jacobians(igl::SLIMData& s, const Eigen::MatrixXd &uv);
- IGL_INLINE void build_linear_system(igl::SLIMData& s, Eigen::SparseMatrix<double> &L);
- IGL_INLINE void pre_calc(igl::SLIMData& s);
- // Implementation
- IGL_INLINE void compute_surface_gradient_matrix(const Eigen::MatrixXd &V, const Eigen::MatrixXi &F,
- const Eigen::MatrixXd &F1, const Eigen::MatrixXd &F2,
- Eigen::SparseMatrix<double> &D1, Eigen::SparseMatrix<double> &D2)
- {
- Eigen::SparseMatrix<double> G;
- igl::grad(V, F, G);
- Eigen::SparseMatrix<double> Dx = G.block(0, 0, F.rows(), V.rows());
- Eigen::SparseMatrix<double> Dy = G.block(F.rows(), 0, F.rows(), V.rows());
- Eigen::SparseMatrix<double> Dz = G.block(2 * F.rows(), 0, F.rows(), V.rows());
- D1 = F1.col(0).asDiagonal() * Dx + F1.col(1).asDiagonal() * Dy + F1.col(2).asDiagonal() * Dz;
- D2 = F2.col(0).asDiagonal() * Dx + F2.col(1).asDiagonal() * Dy + F2.col(2).asDiagonal() * Dz;
- }
- IGL_INLINE void compute_jacobians(igl::SLIMData& s, const Eigen::MatrixXd &uv)
- {
- if (s.F.cols() == 3)
- {
- // Ji=[D1*u,D2*u,D1*v,D2*v];
- s.Ji.col(0) = s.Dx * uv.col(0);
- s.Ji.col(1) = s.Dy * uv.col(0);
- s.Ji.col(2) = s.Dx * uv.col(1);
- s.Ji.col(3) = s.Dy * uv.col(1);
- }
- else /*tet mesh*/{
- // Ji=[D1*u,D2*u,D3*u, D1*v,D2*v, D3*v, D1*w,D2*w,D3*w];
- s.Ji.col(0) = s.Dx * uv.col(0);
- s.Ji.col(1) = s.Dy * uv.col(0);
- s.Ji.col(2) = s.Dz * uv.col(0);
- s.Ji.col(3) = s.Dx * uv.col(1);
- s.Ji.col(4) = s.Dy * uv.col(1);
- s.Ji.col(5) = s.Dz * uv.col(1);
- s.Ji.col(6) = s.Dx * uv.col(2);
- s.Ji.col(7) = s.Dy * uv.col(2);
- s.Ji.col(8) = s.Dz * uv.col(2);
- }
- }
- IGL_INLINE void update_weights_and_closest_rotations(igl::SLIMData& s,
- const Eigen::MatrixXd &V,
- const Eigen::MatrixXi &F,
- Eigen::MatrixXd &uv)
- {
- compute_jacobians(s, uv);
- const double eps = 1e-8;
- double exp_f = s.exp_factor;
- if (s.dim == 2)
- {
- for (int i = 0; i < s.Ji.rows(); ++i)
- {
- typedef Eigen::Matrix<double, 2, 2> Mat2;
- typedef Eigen::Matrix<double, 2, 1> Vec2;
- Mat2 ji, ri, ti, ui, vi;
- Vec2 sing;
- Vec2 closest_sing_vec;
- Mat2 mat_W;
- Vec2 m_sing_new;
- double s1, s2;
- ji(0, 0) = s.Ji(i, 0);
- ji(0, 1) = s.Ji(i, 1);
- ji(1, 0) = s.Ji(i, 2);
- ji(1, 1) = s.Ji(i, 3);
- igl::polar_svd(ji, ri, ti, ui, sing, vi);
- s1 = sing(0);
- s2 = sing(1);
- // Update Weights according to energy
- switch (s.slim_energy)
- {
- case igl::SLIMData::ARAP:
- {
- m_sing_new << 1, 1;
- break;
- }
- case igl::SLIMData::SYMMETRIC_DIRICHLET:
- {
- double s1_g = 2 * (s1 - pow(s1, -3));
- double s2_g = 2 * (s2 - pow(s2, -3));
- m_sing_new << sqrt(s1_g / (2 * (s1 - 1))), sqrt(s2_g / (2 * (s2 - 1)));
- break;
- }
- case igl::SLIMData::LOG_ARAP:
- {
- double s1_g = 2 * (log(s1) / s1);
- double s2_g = 2 * (log(s2) / s2);
- m_sing_new << sqrt(s1_g / (2 * (s1 - 1))), sqrt(s2_g / (2 * (s2 - 1)));
- break;
- }
- case igl::SLIMData::CONFORMAL:
- {
- double s1_g = 1 / (2 * s2) - s2 / (2 * pow(s1, 2));
- double s2_g = 1 / (2 * s1) - s1 / (2 * pow(s2, 2));
- double geo_avg = sqrt(s1 * s2);
- double s1_min = geo_avg;
- double s2_min = geo_avg;
- m_sing_new << sqrt(s1_g / (2 * (s1 - s1_min))), sqrt(s2_g / (2 * (s2 - s2_min)));
- // change local step
- closest_sing_vec << s1_min, s2_min;
- ri = ui * closest_sing_vec.asDiagonal() * vi.transpose();
- break;
- }
- case igl::SLIMData::EXP_CONFORMAL:
- {
- double s1_g = 2 * (s1 - pow(s1, -3));
- double s2_g = 2 * (s2 - pow(s2, -3));
- double geo_avg = sqrt(s1 * s2);
- double s1_min = geo_avg;
- double s2_min = geo_avg;
- double in_exp = exp_f * ((pow(s1, 2) + pow(s2, 2)) / (2 * s1 * s2));
- double exp_thing = exp(in_exp);
- s1_g *= exp_thing * exp_f;
- s2_g *= exp_thing * exp_f;
- m_sing_new << sqrt(s1_g / (2 * (s1 - 1))), sqrt(s2_g / (2 * (s2 - 1)));
- break;
- }
- case igl::SLIMData::EXP_SYMMETRIC_DIRICHLET:
- {
- double s1_g = 2 * (s1 - pow(s1, -3));
- double s2_g = 2 * (s2 - pow(s2, -3));
- double in_exp = exp_f * (pow(s1, 2) + pow(s1, -2) + pow(s2, 2) + pow(s2, -2));
- double exp_thing = exp(in_exp);
- s1_g *= exp_thing * exp_f;
- s2_g *= exp_thing * exp_f;
- m_sing_new << sqrt(s1_g / (2 * (s1 - 1))), sqrt(s2_g / (2 * (s2 - 1)));
- break;
- }
- }
- if (std::abs(s1 - 1) < eps) m_sing_new(0) = 1;
- if (std::abs(s2 - 1) < eps) m_sing_new(1) = 1;
- mat_W = ui * m_sing_new.asDiagonal() * ui.transpose();
- s.W_11(i) = mat_W(0, 0);
- s.W_12(i) = mat_W(0, 1);
- s.W_21(i) = mat_W(1, 0);
- s.W_22(i) = mat_W(1, 1);
- // 2) Update local step (doesn't have to be a rotation, for instance in case of conformal energy)
- s.Ri(i, 0) = ri(0, 0);
- s.Ri(i, 1) = ri(1, 0);
- s.Ri(i, 2) = ri(0, 1);
- s.Ri(i, 3) = ri(1, 1);
- }
- }
- else
- {
- typedef Eigen::Matrix<double, 3, 1> Vec3;
- typedef Eigen::Matrix<double, 3, 3> Mat3;
- Mat3 ji;
- Vec3 m_sing_new;
- Vec3 closest_sing_vec;
- const double sqrt_2 = sqrt(2);
- for (int i = 0; i < s.Ji.rows(); ++i)
- {
- ji(0, 0) = s.Ji(i, 0);
- ji(0, 1) = s.Ji(i, 1);
- ji(0, 2) = s.Ji(i, 2);
- ji(1, 0) = s.Ji(i, 3);
- ji(1, 1) = s.Ji(i, 4);
- ji(1, 2) = s.Ji(i, 5);
- ji(2, 0) = s.Ji(i, 6);
- ji(2, 1) = s.Ji(i, 7);
- ji(2, 2) = s.Ji(i, 8);
- Mat3 ri, ti, ui, vi;
- Vec3 sing;
- igl::polar_svd(ji, ri, ti, ui, sing, vi);
- double s1 = sing(0);
- double s2 = sing(1);
- double s3 = sing(2);
- // 1) Update Weights
- switch (s.slim_energy)
- {
- case igl::SLIMData::ARAP:
- {
- m_sing_new << 1, 1, 1;
- break;
- }
- case igl::SLIMData::LOG_ARAP:
- {
- double s1_g = 2 * (log(s1) / s1);
- double s2_g = 2 * (log(s2) / s2);
- double s3_g = 2 * (log(s3) / s3);
- m_sing_new << sqrt(s1_g / (2 * (s1 - 1))), sqrt(s2_g / (2 * (s2 - 1))), sqrt(s3_g / (2 * (s3 - 1)));
- break;
- }
- case igl::SLIMData::SYMMETRIC_DIRICHLET:
- {
- double s1_g = 2 * (s1 - pow(s1, -3));
- double s2_g = 2 * (s2 - pow(s2, -3));
- double s3_g = 2 * (s3 - pow(s3, -3));
- m_sing_new << sqrt(s1_g / (2 * (s1 - 1))), sqrt(s2_g / (2 * (s2 - 1))), sqrt(s3_g / (2 * (s3 - 1)));
- break;
- }
- case igl::SLIMData::EXP_SYMMETRIC_DIRICHLET:
- {
- double s1_g = 2 * (s1 - pow(s1, -3));
- double s2_g = 2 * (s2 - pow(s2, -3));
- double s3_g = 2 * (s3 - pow(s3, -3));
- m_sing_new << sqrt(s1_g / (2 * (s1 - 1))), sqrt(s2_g / (2 * (s2 - 1))), sqrt(s3_g / (2 * (s3 - 1)));
- double in_exp = exp_f * (pow(s1, 2) + pow(s1, -2) + pow(s2, 2) + pow(s2, -2) + pow(s3, 2) + pow(s3, -2));
- double exp_thing = exp(in_exp);
- s1_g *= exp_thing * exp_f;
- s2_g *= exp_thing * exp_f;
- s3_g *= exp_thing * exp_f;
- m_sing_new << sqrt(s1_g / (2 * (s1 - 1))), sqrt(s2_g / (2 * (s2 - 1))), sqrt(s3_g / (2 * (s3 - 1)));
- break;
- }
- case igl::SLIMData::CONFORMAL:
- {
- double common_div = 9 * (pow(s1 * s2 * s3, 5. / 3.));
- double s1_g = (-2 * s2 * s3 * (pow(s2, 2) + pow(s3, 2) - 2 * pow(s1, 2))) / common_div;
- double s2_g = (-2 * s1 * s3 * (pow(s1, 2) + pow(s3, 2) - 2 * pow(s2, 2))) / common_div;
- double s3_g = (-2 * s1 * s2 * (pow(s1, 2) + pow(s2, 2) - 2 * pow(s3, 2))) / common_div;
- double closest_s = sqrt(pow(s1, 2) + pow(s3, 2)) / sqrt_2;
- double s1_min = closest_s;
- double s2_min = closest_s;
- double s3_min = closest_s;
- m_sing_new << sqrt(s1_g / (2 * (s1 - s1_min))), sqrt(s2_g / (2 * (s2 - s2_min))), sqrt(
- s3_g / (2 * (s3 - s3_min)));
- // change local step
- closest_sing_vec << s1_min, s2_min, s3_min;
- ri = ui * closest_sing_vec.asDiagonal() * vi.transpose();
- break;
- }
- case igl::SLIMData::EXP_CONFORMAL:
- {
- // E_conf = (s1^2 + s2^2 + s3^2)/(3*(s1*s2*s3)^(2/3) )
- // dE_conf/ds1 = (-2*(s2*s3)*(s2^2+s3^2 -2*s1^2) ) / (9*(s1*s2*s3)^(5/3))
- // Argmin E_conf(s1): s1 = sqrt(s1^2+s2^2)/sqrt(2)
- double common_div = 9 * (pow(s1 * s2 * s3, 5. / 3.));
- double s1_g = (-2 * s2 * s3 * (pow(s2, 2) + pow(s3, 2) - 2 * pow(s1, 2))) / common_div;
- double s2_g = (-2 * s1 * s3 * (pow(s1, 2) + pow(s3, 2) - 2 * pow(s2, 2))) / common_div;
- double s3_g = (-2 * s1 * s2 * (pow(s1, 2) + pow(s2, 2) - 2 * pow(s3, 2))) / common_div;
- double in_exp = exp_f * ((pow(s1, 2) + pow(s2, 2) + pow(s3, 2)) / (3 * pow((s1 * s2 * s3), 2. / 3)));;
- double exp_thing = exp(in_exp);
- double closest_s = sqrt(pow(s1, 2) + pow(s3, 2)) / sqrt_2;
- double s1_min = closest_s;
- double s2_min = closest_s;
- double s3_min = closest_s;
- s1_g *= exp_thing * exp_f;
- s2_g *= exp_thing * exp_f;
- s3_g *= exp_thing * exp_f;
- m_sing_new << sqrt(s1_g / (2 * (s1 - s1_min))), sqrt(s2_g / (2 * (s2 - s2_min))), sqrt(
- s3_g / (2 * (s3 - s3_min)));
- // change local step
- closest_sing_vec << s1_min, s2_min, s3_min;
- ri = ui * closest_sing_vec.asDiagonal() * vi.transpose();
- }
- }
- if (std::abs(s1 - 1) < eps) m_sing_new(0) = 1;
- if (std::abs(s2 - 1) < eps) m_sing_new(1) = 1;
- if (std::abs(s3 - 1) < eps) m_sing_new(2) = 1;
- Mat3 mat_W;
- mat_W = ui * m_sing_new.asDiagonal() * ui.transpose();
- s.W_11(i) = mat_W(0, 0);
- s.W_12(i) = mat_W(0, 1);
- s.W_13(i) = mat_W(0, 2);
- s.W_21(i) = mat_W(1, 0);
- s.W_22(i) = mat_W(1, 1);
- s.W_23(i) = mat_W(1, 2);
- s.W_31(i) = mat_W(2, 0);
- s.W_32(i) = mat_W(2, 1);
- s.W_33(i) = mat_W(2, 2);
- // 2) Update closest rotations (not rotations in case of conformal energy)
- s.Ri(i, 0) = ri(0, 0);
- s.Ri(i, 1) = ri(1, 0);
- s.Ri(i, 2) = ri(2, 0);
- s.Ri(i, 3) = ri(0, 1);
- s.Ri(i, 4) = ri(1, 1);
- s.Ri(i, 5) = ri(2, 1);
- s.Ri(i, 6) = ri(0, 2);
- s.Ri(i, 7) = ri(1, 2);
- s.Ri(i, 8) = ri(2, 2);
- } // for loop end
- } // if dim end
- }
- IGL_INLINE void solve_weighted_arap(igl::SLIMData& s,
- const Eigen::MatrixXd &V,
- const Eigen::MatrixXi &F,
- Eigen::MatrixXd &uv,
- Eigen::VectorXi &soft_b_p,
- Eigen::MatrixXd &soft_bc_p)
- {
- using namespace Eigen;
- Eigen::SparseMatrix<double> L;
- build_linear_system(s,L);
- igl::Timer t;
-
- t.start();
- // solve
- Eigen::VectorXd Uc;
- #ifndef CHOLMOD
- if (s.dim == 2)
- {
- SimplicialLDLT<Eigen::SparseMatrix<double> > solver;
- Uc = solver.compute(L).solve(s.rhs);
- }
- else
- { // seems like CG performs much worse for 2D and way better for 3D
- Eigen::VectorXd guess(uv.rows() * s.dim);
- for (int i = 0; i < s.v_num; i++) for (int j = 0; j < s.dim; j++) guess(uv.rows() * j + i) = uv(i, j); // flatten vector
- ConjugateGradient<Eigen::SparseMatrix<double>, Lower | Upper> cg;
- cg.setTolerance(1e-8);
- cg.compute(L);
- Uc = cg.solveWithGuess(s.rhs, guess);
- }
- #else
- CholmodSimplicialLDLT<Eigen::SparseMatrix<double> > solver;
- Uc = solver.compute(L).solve(s.rhs);
- #endif
- for (int i = 0; i < s.dim; i++)
- uv.col(i) = Uc.block(i * s.v_n, 0, s.v_n, 1);
- t.stop();
- std::cerr << "solve: " << t.getElapsedTime() << std::endl;
- }
- IGL_INLINE void pre_calc(igl::SLIMData& s)
- {
- if (!s.has_pre_calc)
- {
- s.v_n = s.v_num;
- s.f_n = s.f_num;
- if (s.F.cols() == 3)
- {
- s.dim = 2;
- Eigen::MatrixXd F1, F2, F3;
- igl::local_basis(s.V, s.F, F1, F2, F3);
- compute_surface_gradient_matrix(s.V, s.F, F1, F2, s.Dx, s.Dy);
- s.W_11.resize(s.f_n);
- s.W_12.resize(s.f_n);
- s.W_21.resize(s.f_n);
- s.W_22.resize(s.f_n);
- }
- else
- {
- s.dim = 3;
- Eigen::SparseMatrix<double> G;
- igl::grad(s.V, s.F, G,
- s.mesh_improvement_3d /*use normal gradient, or one from a "regular" tet*/);
- s.Dx = G.block(0, 0, s.F.rows(), s.V.rows());
- s.Dy = G.block(s.F.rows(), 0, s.F.rows(), s.V.rows());
- s.Dz = G.block(2 * s.F.rows(), 0, s.F.rows(), s.V.rows());
- s.W_11.resize(s.f_n);
- s.W_12.resize(s.f_n);
- s.W_13.resize(s.f_n);
- s.W_21.resize(s.f_n);
- s.W_22.resize(s.f_n);
- s.W_23.resize(s.f_n);
- s.W_31.resize(s.f_n);
- s.W_32.resize(s.f_n);
- s.W_33.resize(s.f_n);
- }
- s.Dx.makeCompressed();
- s.Dy.makeCompressed();
- s.Dz.makeCompressed();
- s.Ri.resize(s.f_n, s.dim * s.dim);
- s.Ji.resize(s.f_n, s.dim * s.dim);
- s.rhs.resize(s.dim * s.v_num);
- // flattened weight matrix
- s.WGL_M.resize(s.dim * s.dim * s.f_n);
- for (int i = 0; i < s.dim * s.dim; i++)
- for (int j = 0; j < s.f_n; j++)
- s.WGL_M(i * s.f_n + j) = s.M(j);
- s.first_solve = true;
- s.has_pre_calc = true;
- }
- }
- IGL_INLINE void build_linear_system(igl::SLIMData& s, Eigen::SparseMatrix<double> &L)
- {
- // formula (35) in paper
- igl::Timer t;
- t.start();
- Eigen::SparseMatrix<double> A(s.dim * s.dim * s.f_n, s.dim * s.v_n);
- buildA(s,A);
- t.stop();
- std::cerr << "buildA: " << t.getElapsedTime() << std::endl;
- // // // TEST CODE
- // std::vector<Eigen::Triplet<double> > test;
- // test.push_back(Eigen::Triplet<double>(4,3,10));
- // test.push_back(Eigen::Triplet<double>(1,0,20));
- // test.push_back(Eigen::Triplet<double>(2,2,30));
- // test.push_back(Eigen::Triplet<double>(4,4,2.5));
- // A = Eigen::SparseMatrix<double>(5,5);
- // A.setFromTriplets(test.begin(),test.end());
- A.makeCompressed();
- //std::cin.get();
-
- t.start();
- Eigen::SparseMatrix<double> At = A.transpose();
- At.makeCompressed();
- t.stop();
- std::cerr << "At: " << t.getElapsedTime() << std::endl;
- t.start();
- Eigen::SparseMatrix<double> id_m(At.rows(), At.rows());
- id_m.setIdentity();
- t.stop();
- std::cerr << "idm: " << t.getElapsedTime() << std::endl;
- // std::cerr << "\n TEST CODE" << std::endl;
- // s.WGL_M.resize(5);
- // s.WGL_M[0] = 1;
- // s.WGL_M[1] = 2;
- // s.WGL_M[2] = 3;
- // s.WGL_M[3] = 3;
- // s.WGL_M[4] = 10;
- t.start();
- Eigen::SparseMatrix<double> AtA_slow = At * s.WGL_M.asDiagonal() * A;
- t.stop();
- std::cerr << "AtA slow: " << t.getElapsedTime() << std::endl;
- // std::cerr << "AtA slow: " << AtA_slow << std::endl;
- t.start();
- Eigen::SparseMatrix<double> AtA_fast;
- igl::sparse_AtA_fast_data data;
- data.W = s.WGL_M;
- igl::sparse_AtA_fast_precompute(A,AtA_fast,data);
- t.stop();
- std::cerr << "AtA fast pre: " << t.getElapsedTime() << std::endl;
- t.start();
- igl::sparse_AtA_fast(A,AtA_fast,data);
- t.stop();
- std::cerr << "AtA fast: " << t.getElapsedTime() << std::endl;
- // std::cerr << "AtA fast: " << AtA_fast << std::endl;
- std::cerr << "Difference: " << (AtA_fast - AtA_slow).norm() << std::endl;
- exit(0);
- // add proximal penalty
- t.start();
- L = At * s.WGL_M.asDiagonal() * A + s.proximal_p * id_m; //add also a proximal term
- L.makeCompressed();
- t.stop();
- std::cerr << "proximal: " << t.getElapsedTime() << std::endl;
- t.start();
- buildRhs(s, At);
- t.stop();
- std::cerr << "rhs: " << t.getElapsedTime() << std::endl;
- t.start();
- Eigen::SparseMatrix<double> OldL = L;
- add_soft_constraints(s,L);
- L.makeCompressed();
- t.stop();
- std::cerr << "soft: " << t.getElapsedTime() << std::endl;
- }
- IGL_INLINE void add_soft_constraints(igl::SLIMData& s, Eigen::SparseMatrix<double> &L)
- {
- int v_n = s.v_num;
- for (int d = 0; d < s.dim; d++)
- {
- for (int i = 0; i < s.b.rows(); i++)
- {
- int v_idx = s.b(i);
- s.rhs(d * v_n + v_idx) += s.soft_const_p * s.bc(i, d); // rhs
- L.coeffRef(d * v_n + v_idx, d * v_n + v_idx) += s.soft_const_p; // diagonal of matrix
- }
- }
- }
- IGL_INLINE double compute_energy(igl::SLIMData& s, Eigen::MatrixXd &V_new)
- {
- compute_jacobians(s,V_new);
- return compute_energy_with_jacobians(s, s.V, s.F, s.Ji, V_new, s.M) +
- compute_soft_const_energy(s, s.V, s.F, V_new);
- }
- IGL_INLINE double compute_soft_const_energy(igl::SLIMData& s,
- const Eigen::MatrixXd &V,
- const Eigen::MatrixXi &F,
- Eigen::MatrixXd &V_o)
- {
- double e = 0;
- for (int i = 0; i < s.b.rows(); i++)
- {
- e += s.soft_const_p * (s.bc.row(i) - V_o.row(s.b(i))).squaredNorm();
- }
- return e;
- }
- IGL_INLINE double compute_energy_with_jacobians(igl::SLIMData& s,
- const Eigen::MatrixXd &V,
- const Eigen::MatrixXi &F, const Eigen::MatrixXd &Ji,
- Eigen::MatrixXd &uv, Eigen::VectorXd &areas)
- {
- double energy = 0;
- if (s.dim == 2)
- {
- Eigen::Matrix<double, 2, 2> ji;
- for (int i = 0; i < s.f_n; i++)
- {
- ji(0, 0) = Ji(i, 0);
- ji(0, 1) = Ji(i, 1);
- ji(1, 0) = Ji(i, 2);
- ji(1, 1) = Ji(i, 3);
- typedef Eigen::Matrix<double, 2, 2> Mat2;
- typedef Eigen::Matrix<double, 2, 1> Vec2;
- Mat2 ri, ti, ui, vi;
- Vec2 sing;
- igl::polar_svd(ji, ri, ti, ui, sing, vi);
- double s1 = sing(0);
- double s2 = sing(1);
- switch (s.slim_energy)
- {
- case igl::SLIMData::ARAP:
- {
- energy += areas(i) * (pow(s1 - 1, 2) + pow(s2 - 1, 2));
- break;
- }
- case igl::SLIMData::SYMMETRIC_DIRICHLET:
- {
- energy += areas(i) * (pow(s1, 2) + pow(s1, -2) + pow(s2, 2) + pow(s2, -2));
- break;
- }
- case igl::SLIMData::EXP_SYMMETRIC_DIRICHLET:
- {
- energy += areas(i) * exp(s.exp_factor * (pow(s1, 2) + pow(s1, -2) + pow(s2, 2) + pow(s2, -2)));
- break;
- }
- case igl::SLIMData::LOG_ARAP:
- {
- energy += areas(i) * (pow(log(s1), 2) + pow(log(s2), 2));
- break;
- }
- case igl::SLIMData::CONFORMAL:
- {
- energy += areas(i) * ((pow(s1, 2) + pow(s2, 2)) / (2 * s1 * s2));
- break;
- }
- case igl::SLIMData::EXP_CONFORMAL:
- {
- energy += areas(i) * exp(s.exp_factor * ((pow(s1, 2) + pow(s2, 2)) / (2 * s1 * s2)));
- break;
- }
- }
- }
- }
- else
- {
- Eigen::Matrix<double, 3, 3> ji;
- for (int i = 0; i < s.f_n; i++)
- {
- ji(0, 0) = Ji(i, 0);
- ji(0, 1) = Ji(i, 1);
- ji(0, 2) = Ji(i, 2);
- ji(1, 0) = Ji(i, 3);
- ji(1, 1) = Ji(i, 4);
- ji(1, 2) = Ji(i, 5);
- ji(2, 0) = Ji(i, 6);
- ji(2, 1) = Ji(i, 7);
- ji(2, 2) = Ji(i, 8);
- typedef Eigen::Matrix<double, 3, 3> Mat3;
- typedef Eigen::Matrix<double, 3, 1> Vec3;
- Mat3 ri, ti, ui, vi;
- Vec3 sing;
- igl::polar_svd(ji, ri, ti, ui, sing, vi);
- double s1 = sing(0);
- double s2 = sing(1);
- double s3 = sing(2);
- switch (s.slim_energy)
- {
- case igl::SLIMData::ARAP:
- {
- energy += areas(i) * (pow(s1 - 1, 2) + pow(s2 - 1, 2) + pow(s3 - 1, 2));
- break;
- }
- case igl::SLIMData::SYMMETRIC_DIRICHLET:
- {
- energy += areas(i) * (pow(s1, 2) + pow(s1, -2) + pow(s2, 2) + pow(s2, -2) + pow(s3, 2) + pow(s3, -2));
- break;
- }
- case igl::SLIMData::EXP_SYMMETRIC_DIRICHLET:
- {
- energy += areas(i) * exp(s.exp_factor *
- (pow(s1, 2) + pow(s1, -2) + pow(s2, 2) + pow(s2, -2) + pow(s3, 2) + pow(s3, -2)));
- break;
- }
- case igl::SLIMData::LOG_ARAP:
- {
- energy += areas(i) * (pow(log(s1), 2) + pow(log(std::abs(s2)), 2) + pow(log(std::abs(s3)), 2));
- break;
- }
- case igl::SLIMData::CONFORMAL:
- {
- energy += areas(i) * ((pow(s1, 2) + pow(s2, 2) + pow(s3, 2)) / (3 * pow(s1 * s2 * s3, 2. / 3.)));
- break;
- }
- case igl::SLIMData::EXP_CONFORMAL:
- {
- energy += areas(i) * exp((pow(s1, 2) + pow(s2, 2) + pow(s3, 2)) / (3 * pow(s1 * s2 * s3, 2. / 3.)));
- break;
- }
- }
- }
- }
- return energy;
- }
- IGL_INLINE void buildA(igl::SLIMData& s, Eigen::SparseMatrix<double> &A)
- {
- // formula (35) in paper
- std::vector<Eigen::Triplet<double> > IJV;
- if (s.dim == 2)
- {
- IJV.reserve(4 * (s.Dx.outerSize() + s.Dy.outerSize()));
- /*A = [W11*Dx, W12*Dx;
- W11*Dy, W12*Dy;
- W21*Dx, W22*Dx;
- W21*Dy, W22*Dy];*/
- for (int k = 0; k < s.Dx.outerSize(); ++k)
- {
- for (Eigen::SparseMatrix<double>::InnerIterator it(s.Dx, k); it; ++it)
- {
- int dx_r = it.row();
- int dx_c = it.col();
- double val = it.value();
- IJV.push_back(Eigen::Triplet<double>(dx_r, dx_c, val * s.W_11(dx_r)));
- IJV.push_back(Eigen::Triplet<double>(dx_r, s.v_n + dx_c, val * s.W_12(dx_r)));
- IJV.push_back(Eigen::Triplet<double>(2 * s.f_n + dx_r, dx_c, val * s.W_21(dx_r)));
- IJV.push_back(Eigen::Triplet<double>(2 * s.f_n + dx_r, s.v_n + dx_c, val * s.W_22(dx_r)));
- }
- }
- for (int k = 0; k < s.Dy.outerSize(); ++k)
- {
- for (Eigen::SparseMatrix<double>::InnerIterator it(s.Dy, k); it; ++it)
- {
- int dy_r = it.row();
- int dy_c = it.col();
- double val = it.value();
- IJV.push_back(Eigen::Triplet<double>(s.f_n + dy_r, dy_c, val * s.W_11(dy_r)));
- IJV.push_back(Eigen::Triplet<double>(s.f_n + dy_r, s.v_n + dy_c, val * s.W_12(dy_r)));
- IJV.push_back(Eigen::Triplet<double>(3 * s.f_n + dy_r, dy_c, val * s.W_21(dy_r)));
- IJV.push_back(Eigen::Triplet<double>(3 * s.f_n + dy_r, s.v_n + dy_c, val * s.W_22(dy_r)));
- }
- }
- }
- else
- {
- /*A = [W11*Dx, W12*Dx, W13*Dx;
- W11*Dy, W12*Dy, W13*Dy;
- W11*Dz, W12*Dz, W13*Dz;
- W21*Dx, W22*Dx, W23*Dx;
- W21*Dy, W22*Dy, W23*Dy;
- W21*Dz, W22*Dz, W23*Dz;
- W31*Dx, W32*Dx, W33*Dx;
- W31*Dy, W32*Dy, W33*Dy;
- W31*Dz, W32*Dz, W33*Dz;];*/
- IJV.reserve(9 * (s.Dx.outerSize() + s.Dy.outerSize() + s.Dz.outerSize()));
- for (int k = 0; k < s.Dx.outerSize(); k++)
- {
- for (Eigen::SparseMatrix<double>::InnerIterator it(s.Dx, k); it; ++it)
- {
- int dx_r = it.row();
- int dx_c = it.col();
- double val = it.value();
- IJV.push_back(Eigen::Triplet<double>(dx_r, dx_c, val * s.W_11(dx_r)));
- IJV.push_back(Eigen::Triplet<double>(dx_r, s.v_n + dx_c, val * s.W_12(dx_r)));
- IJV.push_back(Eigen::Triplet<double>(dx_r, 2 * s.v_n + dx_c, val * s.W_13(dx_r)));
- IJV.push_back(Eigen::Triplet<double>(3 * s.f_n + dx_r, dx_c, val * s.W_21(dx_r)));
- IJV.push_back(Eigen::Triplet<double>(3 * s.f_n + dx_r, s.v_n + dx_c, val * s.W_22(dx_r)));
- IJV.push_back(Eigen::Triplet<double>(3 * s.f_n + dx_r, 2 * s.v_n + dx_c, val * s.W_23(dx_r)));
- IJV.push_back(Eigen::Triplet<double>(6 * s.f_n + dx_r, dx_c, val * s.W_31(dx_r)));
- IJV.push_back(Eigen::Triplet<double>(6 * s.f_n + dx_r, s.v_n + dx_c, val * s.W_32(dx_r)));
- IJV.push_back(Eigen::Triplet<double>(6 * s.f_n + dx_r, 2 * s.v_n + dx_c, val * s.W_33(dx_r)));
- }
- }
- for (int k = 0; k < s.Dy.outerSize(); k++)
- {
- for (Eigen::SparseMatrix<double>::InnerIterator it(s.Dy, k); it; ++it)
- {
- int dy_r = it.row();
- int dy_c = it.col();
- double val = it.value();
- IJV.push_back(Eigen::Triplet<double>(s.f_n + dy_r, dy_c, val * s.W_11(dy_r)));
- IJV.push_back(Eigen::Triplet<double>(s.f_n + dy_r, s.v_n + dy_c, val * s.W_12(dy_r)));
- IJV.push_back(Eigen::Triplet<double>(s.f_n + dy_r, 2 * s.v_n + dy_c, val * s.W_13(dy_r)));
- IJV.push_back(Eigen::Triplet<double>(4 * s.f_n + dy_r, dy_c, val * s.W_21(dy_r)));
- IJV.push_back(Eigen::Triplet<double>(4 * s.f_n + dy_r, s.v_n + dy_c, val * s.W_22(dy_r)));
- IJV.push_back(Eigen::Triplet<double>(4 * s.f_n + dy_r, 2 * s.v_n + dy_c, val * s.W_23(dy_r)));
- IJV.push_back(Eigen::Triplet<double>(7 * s.f_n + dy_r, dy_c, val * s.W_31(dy_r)));
- IJV.push_back(Eigen::Triplet<double>(7 * s.f_n + dy_r, s.v_n + dy_c, val * s.W_32(dy_r)));
- IJV.push_back(Eigen::Triplet<double>(7 * s.f_n + dy_r, 2 * s.v_n + dy_c, val * s.W_33(dy_r)));
- }
- }
- for (int k = 0; k < s.Dz.outerSize(); k++)
- {
- for (Eigen::SparseMatrix<double>::InnerIterator it(s.Dz, k); it; ++it)
- {
- int dz_r = it.row();
- int dz_c = it.col();
- double val = it.value();
- IJV.push_back(Eigen::Triplet<double>(2 * s.f_n + dz_r, dz_c, val * s.W_11(dz_r)));
- IJV.push_back(Eigen::Triplet<double>(2 * s.f_n + dz_r, s.v_n + dz_c, val * s.W_12(dz_r)));
- IJV.push_back(Eigen::Triplet<double>(2 * s.f_n + dz_r, 2 * s.v_n + dz_c, val * s.W_13(dz_r)));
- IJV.push_back(Eigen::Triplet<double>(5 * s.f_n + dz_r, dz_c, val * s.W_21(dz_r)));
- IJV.push_back(Eigen::Triplet<double>(5 * s.f_n + dz_r, s.v_n + dz_c, val * s.W_22(dz_r)));
- IJV.push_back(Eigen::Triplet<double>(5 * s.f_n + dz_r, 2 * s.v_n + dz_c, val * s.W_23(dz_r)));
- IJV.push_back(Eigen::Triplet<double>(8 * s.f_n + dz_r, dz_c, val * s.W_31(dz_r)));
- IJV.push_back(Eigen::Triplet<double>(8 * s.f_n + dz_r, s.v_n + dz_c, val * s.W_32(dz_r)));
- IJV.push_back(Eigen::Triplet<double>(8 * s.f_n + dz_r, 2 * s.v_n + dz_c, val * s.W_33(dz_r)));
- }
- }
- }
- // igl::Timer t;
- // t.start();
- A.setFromTriplets(IJV.begin(), IJV.end());
- // t.stop();
- // std::cerr << "setFromTriplets: " << t.getElapsedTime() << std::endl;
- // // Debug Code
- // Eigen::VectorXi data;
- // t.start();
- // igl::fast_sparse_precompute(IJV,A,data);
- // t.stop();
- // std::cerr << "fast_precompute: " << t.getElapsedTime() << std::endl;
- // t.start();
- // igl::fast_sparse(IJV,A,data);
- // t.stop();
- // std::cerr << "fast_precompute: " << t.getElapsedTime() << std::endl;
- }
- IGL_INLINE void buildRhs(igl::SLIMData& s, const Eigen::SparseMatrix<double> &At)
- {
- Eigen::VectorXd f_rhs(s.dim * s.dim * s.f_n);
- f_rhs.setZero();
- if (s.dim == 2)
- {
- /*b = [W11*R11 + W12*R21; (formula (36))
- W11*R12 + W12*R22;
- W21*R11 + W22*R21;
- W21*R12 + W22*R22];*/
- for (int i = 0; i < s.f_n; i++)
- {
- f_rhs(i + 0 * s.f_n) = s.W_11(i) * s.Ri(i, 0) + s.W_12(i) * s.Ri(i, 1);
- f_rhs(i + 1 * s.f_n) = s.W_11(i) * s.Ri(i, 2) + s.W_12(i) * s.Ri(i, 3);
- f_rhs(i + 2 * s.f_n) = s.W_21(i) * s.Ri(i, 0) + s.W_22(i) * s.Ri(i, 1);
- f_rhs(i + 3 * s.f_n) = s.W_21(i) * s.Ri(i, 2) + s.W_22(i) * s.Ri(i, 3);
- }
- }
- else
- {
- /*b = [W11*R11 + W12*R21 + W13*R31;
- W11*R12 + W12*R22 + W13*R32;
- W11*R13 + W12*R23 + W13*R33;
- W21*R11 + W22*R21 + W23*R31;
- W21*R12 + W22*R22 + W23*R32;
- W21*R13 + W22*R23 + W23*R33;
- W31*R11 + W32*R21 + W33*R31;
- W31*R12 + W32*R22 + W33*R32;
- W31*R13 + W32*R23 + W33*R33;];*/
- for (int i = 0; i < s.f_n; i++)
- {
- f_rhs(i + 0 * s.f_n) = s.W_11(i) * s.Ri(i, 0) + s.W_12(i) * s.Ri(i, 1) + s.W_13(i) * s.Ri(i, 2);
- f_rhs(i + 1 * s.f_n) = s.W_11(i) * s.Ri(i, 3) + s.W_12(i) * s.Ri(i, 4) + s.W_13(i) * s.Ri(i, 5);
- f_rhs(i + 2 * s.f_n) = s.W_11(i) * s.Ri(i, 6) + s.W_12(i) * s.Ri(i, 7) + s.W_13(i) * s.Ri(i, 8);
- f_rhs(i + 3 * s.f_n) = s.W_21(i) * s.Ri(i, 0) + s.W_22(i) * s.Ri(i, 1) + s.W_23(i) * s.Ri(i, 2);
- f_rhs(i + 4 * s.f_n) = s.W_21(i) * s.Ri(i, 3) + s.W_22(i) * s.Ri(i, 4) + s.W_23(i) * s.Ri(i, 5);
- f_rhs(i + 5 * s.f_n) = s.W_21(i) * s.Ri(i, 6) + s.W_22(i) * s.Ri(i, 7) + s.W_23(i) * s.Ri(i, 8);
- f_rhs(i + 6 * s.f_n) = s.W_31(i) * s.Ri(i, 0) + s.W_32(i) * s.Ri(i, 1) + s.W_33(i) * s.Ri(i, 2);
- f_rhs(i + 7 * s.f_n) = s.W_31(i) * s.Ri(i, 3) + s.W_32(i) * s.Ri(i, 4) + s.W_33(i) * s.Ri(i, 5);
- f_rhs(i + 8 * s.f_n) = s.W_31(i) * s.Ri(i, 6) + s.W_32(i) * s.Ri(i, 7) + s.W_33(i) * s.Ri(i, 8);
- }
- }
- Eigen::VectorXd uv_flat(s.dim *s.v_n);
- for (int i = 0; i < s.dim; i++)
- for (int j = 0; j < s.v_n; j++)
- uv_flat(s.v_n * i + j) = s.V_o(j, i);
- s.rhs = (At * s.WGL_M.asDiagonal() * f_rhs + s.proximal_p * uv_flat);
- }
- }
- }
- /// Slim Implementation
- IGL_INLINE void igl::slim_precompute(
- const Eigen::MatrixXd &V,
- const Eigen::MatrixXi &F,
- const Eigen::MatrixXd &V_init,
- SLIMData &data,
- SLIMData::SLIM_ENERGY slim_energy,
- Eigen::VectorXi &b,
- Eigen::MatrixXd &bc,
- double soft_p)
- {
- data.V = V;
- data.F = F;
- data.V_o = V_init;
- data.v_num = V.rows();
- data.f_num = F.rows();
- data.slim_energy = slim_energy;
- data.b = b;
- data.bc = bc;
- data.soft_const_p = soft_p;
- data.proximal_p = 0.0001;
- igl::doublearea(V, F, data.M);
- data.M /= 2.;
- data.mesh_area = data.M.sum();
- data.mesh_improvement_3d = false; // whether to use a jacobian derived from a real mesh or an abstract regular mesh (used for mesh improvement)
- data.exp_factor = 1.0; // param used only for exponential energies (e.g exponential symmetric dirichlet)
- assert (F.cols() == 3 || F.cols() == 4);
- igl::slim::pre_calc(data);
- data.energy = igl::slim::compute_energy(data,data.V_o) / data.mesh_area;
- }
- IGL_INLINE Eigen::MatrixXd igl::slim_solve(SLIMData &data, int iter_num)
- {
- for (int i = 0; i < iter_num; i++)
- {
- Eigen::MatrixXd dest_res;
- dest_res = data.V_o;
- // Solve Weighted Proxy
- igl::slim::update_weights_and_closest_rotations(data,data.V, data.F, dest_res);
- igl::slim::solve_weighted_arap(data,data.V, data.F, dest_res, data.b, data.bc);
- double old_energy = data.energy;
- std::function<double(Eigen::MatrixXd &)> compute_energy = [&](
- Eigen::MatrixXd &aaa) { return igl::slim::compute_energy(data,aaa); };
- data.energy = igl::flip_avoiding_line_search(data.F, data.V_o, dest_res, compute_energy,
- data.energy * data.mesh_area) / data.mesh_area;
- }
- return data.V_o;
- }
- #ifdef IGL_STATIC_LIBRARY
- // Explicit template instantiation
- #endif
|