123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106 |
- // This file is part of libigl, a simple c++ geometry processing library.
- //
- // Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla Public License
- // v. 2.0. If a copy of the MPL was not distributed with this file, You can
- // obtain one at http://mozilla.org/MPL/2.0/.
- #include "gradMat.h"
- #include <vector>
- template <typename T, typename S>
- IGL_INLINE void igl::gradMat(const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> &V,
- const Eigen::Matrix<S, Eigen::Dynamic, Eigen::Dynamic> &F,
- Eigen::SparseMatrix<T> &G )
- {
- Eigen::PlainObjectBase<Eigen::Matrix<T,Eigen::Dynamic,3> > eperp21, eperp13;
- eperp21.resize(F.rows(),3);
- eperp13.resize(F.rows(),3);
- for (int i=0;i<F.rows();++i)
- {
- // renaming indices of vertices of triangles for convenience
- int i1 = F(i,0);
- int i2 = F(i,1);
- int i3 = F(i,2);
-
- // #F x 3 matrices of triangle edge vectors, named after opposite vertices
- Eigen::Matrix<T, 1, 3> v32 = V.row(i3) - V.row(i2);
- Eigen::Matrix<T, 1, 3> v13 = V.row(i1) - V.row(i3);
- Eigen::Matrix<T, 1, 3> v21 = V.row(i2) - V.row(i1);
-
- // area of parallelogram is twice area of triangle
- // area of parallelogram is || v1 x v2 ||
- Eigen::Matrix<T, 1, 3> n = v32.cross(v13);
-
- // This does correct l2 norm of rows, so that it contains #F list of twice
- // triangle areas
- double dblA = std::sqrt(n.dot(n));
-
- // now normalize normals to get unit normals
- Eigen::Matrix<T, 1, 3> u = n / dblA;
-
- // rotate each vector 90 degrees around normal
- double norm21 = std::sqrt(v21.dot(v21));
- double norm13 = std::sqrt(v13.dot(v13));
- eperp21.row(i) = u.cross(v21);
- eperp21.row(i) = eperp21.row(i) / std::sqrt(eperp21.row(i).dot(eperp21.row(i)));
- eperp21.row(i) *= norm21 / dblA;
- eperp13.row(i) = u.cross(v13);
- eperp13.row(i) = eperp13.row(i) / std::sqrt(eperp13.row(i).dot(eperp13.row(i)));
- eperp13.row(i) *= norm13 / dblA;
- }
- std::vector<int> rs;
- rs.reserve(F.rows()*4*3);
- std::vector<int> cs;
- cs.reserve(F.rows()*4*3);
- std::vector<double> vs;
- vs.reserve(F.rows()*4*3);
- // row indices
- for(int r=0;r<3;r++)
- {
- for(int j=0;j<4;j++)
- {
- for(int i=r*F.rows();i<(r+1)*F.rows();i++) rs.push_back(i);
- }
- }
- // column indices
- for(int r=0;r<3;r++)
- {
- for(int i=0;i<F.rows();i++) cs.push_back(F(i,1));
- for(int i=0;i<F.rows();i++) cs.push_back(F(i,0));
- for(int i=0;i<F.rows();i++) cs.push_back(F(i,2));
- for(int i=0;i<F.rows();i++) cs.push_back(F(i,0));
- }
-
- // values
- for(int i=0;i<F.rows();i++) vs.push_back(eperp13(i,0));
- for(int i=0;i<F.rows();i++) vs.push_back(-eperp13(i,0));
- for(int i=0;i<F.rows();i++) vs.push_back(eperp21(i,0));
- for(int i=0;i<F.rows();i++) vs.push_back(-eperp21(i,0));
- for(int i=0;i<F.rows();i++) vs.push_back(eperp13(i,1));
- for(int i=0;i<F.rows();i++) vs.push_back(-eperp13(i,1));
- for(int i=0;i<F.rows();i++) vs.push_back(eperp21(i,1));
- for(int i=0;i<F.rows();i++) vs.push_back(-eperp21(i,1));
- for(int i=0;i<F.rows();i++) vs.push_back(eperp13(i,2));
- for(int i=0;i<F.rows();i++) vs.push_back(-eperp13(i,2));
- for(int i=0;i<F.rows();i++) vs.push_back(eperp21(i,2));
- for(int i=0;i<F.rows();i++) vs.push_back(-eperp21(i,2));
- // create sparse gradient operator matrix
- G.resize(3*F.rows(),V.rows());
- std::vector<Eigen::Triplet<T> > triplets;
- for (int i=0;i<vs.size();++i)
- {
- triplets.push_back(Eigen::Triplet<T>(rs[i],cs[i],vs[i]));
- }
- G.setFromTriplets(triplets.begin(), triplets.end());
- }
- #ifndef IGL_HEADER_ONLY
- // Explicit template specialization
- #endif
|