123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123 |
- // This file is part of libigl, a simple c++ geometry processing library.
- //
- // Copyright (C) 2016 Qingnan Zhou <qnzhou@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla Public License
- // v. 2.0. If a copy of the MPL was not distributed with this file, You can
- // obtain one at http://mozilla.org/MPL/2.0/.
- #include "extract_feature.h"
- #include <igl/unique_edge_map.h>
- #include <CGAL/Kernel/global_functions.h>
- #include <CGAL/Exact_predicates_exact_constructions_kernel.h>
- template<
- typename DerivedV,
- typename DerivedF,
- typename DerivedE >
- IGL_INLINE void igl::copyleft::cgal::extract_feature(
- const Eigen::PlainObjectBase<DerivedV>& V,
- const Eigen::PlainObjectBase<DerivedF>& F,
- const double tol,
- Eigen::PlainObjectBase<DerivedE>& feature_edges) {
- using IndexType = typename DerivedE::Scalar;
- DerivedE E, uE;
- Eigen::VectorXi EMAP;
- std::vector<std::vector<IndexType> > uE2E;
- igl::unique_edge_map(F, E, uE, EMAP, uE2E);
- igl::copyleft::cgal::extract_feature(V, F, tol, E, uE, uE2E, feature_edges);
- }
- template<
- typename DerivedV,
- typename DerivedF,
- typename DerivedE >
- IGL_INLINE void igl::copyleft::cgal::extract_feature(
- const Eigen::PlainObjectBase<DerivedV>& V,
- const Eigen::PlainObjectBase<DerivedF>& F,
- const double tol,
- const Eigen::PlainObjectBase<DerivedE>& E,
- const Eigen::PlainObjectBase<DerivedE>& uE,
- const std::vector<std::vector<typename DerivedE::Scalar> >& uE2E,
- Eigen::PlainObjectBase<DerivedE>& feature_edges) {
- assert(V.cols() == 3);
- assert(F.cols() == 3);
- using Scalar = typename DerivedV::Scalar;
- using IndexType = typename DerivedE::Scalar;
- using Vertex = Eigen::Matrix<Scalar, 3, 1>;
- using Kernel = typename CGAL::Exact_predicates_exact_constructions_kernel;
- using Point = typename Kernel::Point_3;
- const size_t num_unique_edges = uE.rows();
- const size_t num_faces = F.rows();
- // NOTE: CGAL's definition of dihedral angle measures the angle between two
- // facets instead of facet normals.
- const double cos_tol = cos(igl::PI - tol);
- std::vector<size_t> result; // Indices into uE
- auto is_non_manifold = [&uE2E](size_t ei) -> bool {
- return uE2E[ei].size() > 2;
- };
- auto is_boundary = [&uE2E](size_t ei) -> bool {
- return uE2E[ei].size() == 1;
- };
- auto opposite_vertex = [&uE, &F](size_t ei, size_t fi) -> IndexType {
- const size_t v0 = uE(ei, 0);
- const size_t v1 = uE(ei, 1);
- for (size_t i=0; i<3; i++) {
- const size_t v = F(fi, i);
- if (v != v0 && v != v1) { return v; }
- }
- throw "Input face must be topologically degenerate!";
- };
- auto is_feature = [&V, &F, &uE, &uE2E, &opposite_vertex, num_faces](
- size_t ei, double cos_tol) -> bool {
- auto adj_faces = uE2E[ei];
- assert(adj_faces.size() == 2);
- const Vertex v0 = V.row(uE(ei, 0));
- const Vertex v1 = V.row(uE(ei, 1));
- const Vertex v2 = V.row(opposite_vertex(ei, adj_faces[0] % num_faces));
- const Vertex v3 = V.row(opposite_vertex(ei, adj_faces[1] % num_faces));
- const Point p0(v0[0], v0[1], v0[2]);
- const Point p1(v1[0], v1[1], v1[2]);
- const Point p2(v2[0], v2[1], v2[2]);
- const Point p3(v3[0], v3[1], v3[2]);
- const auto ori = CGAL::orientation(p0, p1, p2, p3);
- switch (ori) {
- case CGAL::POSITIVE:
- return CGAL::compare_dihedral_angle(p0, p1, p2, p3, cos_tol) ==
- CGAL::SMALLER;
- case CGAL::NEGATIVE:
- return CGAL::compare_dihedral_angle(p0, p1, p3, p2, cos_tol) ==
- CGAL::SMALLER;
- case CGAL::COPLANAR:
- if (!CGAL::collinear(p0, p1, p2) && !CGAL::collinear(p0, p1, p3)) {
- return CGAL::compare_dihedral_angle(p0, p1, p2, p3, cos_tol) ==
- CGAL::SMALLER;
- } else {
- throw "Dihedral angle (and feature edge) is not well defined for"
- " degenerate triangles!";
- }
- default:
- throw "Unknown CGAL orientation";
- }
- };
- for (size_t i=0; i<num_unique_edges; i++) {
- if (is_boundary(i) || is_non_manifold(i) || is_feature(i, cos_tol)) {
- result.push_back(i);
- }
- }
- const size_t num_feature_edges = result.size();
- feature_edges.resize(num_feature_edges, 2);
- for (size_t i=0; i<num_feature_edges; i++) {
- feature_edges.row(i) = uE.row(result[i]);
- }
- }
|