main.cpp 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398
  1. #include <iostream>
  2. #include "igl/slim.h"
  3. #include "igl/components.h"
  4. #include "igl/readOBJ.h"
  5. #include "igl/writeOBJ.h"
  6. #include "igl/Timer.h"
  7. #include "igl/boundary_loop.h"
  8. #include "igl/map_vertices_to_circle.h"
  9. #include "igl/harmonic.h"
  10. #include <igl/serialize.h>
  11. #include <igl/read_triangle_mesh.h>
  12. #include <igl/opengl/glfw/Viewer.h>
  13. #include <igl/flipped_triangles.h>
  14. #include <igl/euler_characteristic.h>
  15. #include <igl/barycenter.h>
  16. #include <igl/adjacency_matrix.h>
  17. #include <igl/is_edge_manifold.h>
  18. #include <igl/doublearea.h>
  19. #include <igl/cat.h>
  20. #include <stdlib.h>
  21. #include <string>
  22. #include <vector>
  23. using namespace std;
  24. using namespace Eigen;
  25. void check_mesh_for_issues(Eigen::MatrixXd& V, Eigen::MatrixXi& F);
  26. void param_2d_demo_iter(igl::opengl::glfw::Viewer& viewer);
  27. void get_soft_constraint_for_circle(Eigen::MatrixXd& V_o, Eigen::MatrixXi& F, Eigen::VectorXi& b, Eigen::MatrixXd& bc);
  28. void soft_const_demo_iter(igl::opengl::glfw::Viewer& viewer);
  29. void deform_3d_demo_iter(igl::opengl::glfw::Viewer& viewer);
  30. void get_cube_corner_constraints(Eigen::MatrixXd& V_o, Eigen::MatrixXi& F, Eigen::VectorXi& b, Eigen::MatrixXd& bc);
  31. void display_3d_mesh(igl::opengl::glfw::Viewer& viewer);
  32. void int_set_to_eigen_vector(const std::set<int>& int_set, Eigen::VectorXi& vec);
  33. Eigen::MatrixXd V;
  34. Eigen::MatrixXi F;
  35. bool first_iter = true;
  36. igl::SLIMData sData;
  37. igl::Timer timer;
  38. double uv_scale_param;
  39. enum DEMO_TYPE {
  40. PARAM_2D,
  41. SOFT_CONST,
  42. DEFORM_3D
  43. };
  44. DEMO_TYPE demo_type;
  45. bool key_down(igl::opengl::glfw::Viewer& viewer, unsigned char key, int modifier){
  46. if (key == ' ') {
  47. switch (demo_type) {
  48. case PARAM_2D: {
  49. param_2d_demo_iter(viewer);
  50. break;
  51. }
  52. case SOFT_CONST: {
  53. soft_const_demo_iter(viewer);
  54. break;
  55. }
  56. case DEFORM_3D: {
  57. deform_3d_demo_iter(viewer);
  58. break;
  59. }
  60. default:
  61. break;
  62. }
  63. }
  64. return false;
  65. }
  66. void param_2d_demo_iter(igl::opengl::glfw::Viewer& viewer) {
  67. if (first_iter) {
  68. timer.start();
  69. igl::read_triangle_mesh(TUTORIAL_SHARED_PATH "/face.obj", V, F);
  70. check_mesh_for_issues(V,F);
  71. cout << "\tMesh is valid!" << endl;
  72. Eigen::MatrixXd uv_init;
  73. Eigen::VectorXi bnd; Eigen::MatrixXd bnd_uv;
  74. igl::boundary_loop(F,bnd);
  75. igl::map_vertices_to_circle(V,bnd,bnd_uv);
  76. igl::harmonic(V,F,bnd,bnd_uv,1,uv_init);
  77. if (igl::flipped_triangles(uv_init,F).size() != 0) {
  78. igl::harmonic(F,bnd,bnd_uv,1,uv_init); // use uniform laplacian
  79. }
  80. cout << "initialized parametrization" << endl;
  81. sData.slim_energy = igl::SLIMData::SYMMETRIC_DIRICHLET;
  82. Eigen::VectorXi b; Eigen::MatrixXd bc;
  83. slim_precompute(V,F,uv_init,sData, igl::SLIMData::SYMMETRIC_DIRICHLET, b,bc,0);
  84. uv_scale_param = 15 * (1./sqrt(sData.mesh_area));
  85. viewer.data().set_mesh(V, F);
  86. viewer.core.align_camera_center(V,F);
  87. viewer.data().set_uv(sData.V_o*uv_scale_param);
  88. viewer.data().compute_normals();
  89. viewer.data().show_texture = true;
  90. first_iter = false;
  91. } else {
  92. slim_solve(sData,1); // 1 iter
  93. viewer.data().set_uv(sData.V_o*uv_scale_param);
  94. cout << "time = " << timer.getElapsedTime() << endl;
  95. }
  96. }
  97. void soft_const_demo_iter(igl::opengl::glfw::Viewer& viewer) {
  98. if (first_iter) {
  99. igl::read_triangle_mesh(TUTORIAL_SHARED_PATH "/circle.obj", V, F);
  100. check_mesh_for_issues(V,F);
  101. cout << "\tMesh is valid!" << endl;
  102. Eigen::MatrixXd V_0 = V.block(0,0,V.rows(),2);
  103. Eigen::VectorXi b; Eigen::MatrixXd bc;
  104. get_soft_constraint_for_circle(V_0,F,b,bc);
  105. double soft_const_p = 1e5;
  106. slim_precompute(V,F,V_0,sData,igl::SLIMData::SYMMETRIC_DIRICHLET,b,bc,soft_const_p);
  107. viewer.data().set_mesh(V, F);
  108. viewer.core.align_camera_center(V,F);
  109. viewer.data().compute_normals();
  110. viewer.data().show_lines = true;
  111. first_iter = false;
  112. } else {
  113. slim_solve(sData,1); // 1 iter
  114. viewer.data().set_mesh(sData.V_o, F);
  115. }
  116. }
  117. void deform_3d_demo_iter(igl::opengl::glfw::Viewer& viewer) {
  118. if (first_iter) {
  119. igl::readOBJ(TUTORIAL_SHARED_PATH "/cube_40k.obj", V, F);
  120. Eigen::MatrixXd V_0 = V;
  121. Eigen::VectorXi b; Eigen::MatrixXd bc;
  122. get_cube_corner_constraints(V_0,F,b,bc);
  123. double soft_const_p = 1e5;
  124. sData.exp_factor = 5.0;
  125. slim_precompute(V,F,V_0,sData,igl::SLIMData::EXP_CONFORMAL,b,bc,soft_const_p);
  126. //cout << "precomputed" << endl;
  127. first_iter = false;
  128. display_3d_mesh(viewer);
  129. } else {
  130. slim_solve(sData,1); // 1 iter
  131. display_3d_mesh(viewer);
  132. }
  133. }
  134. void display_3d_mesh(igl::opengl::glfw::Viewer& viewer) {
  135. MatrixXd V_temp; MatrixXi F_temp;
  136. Eigen::MatrixXd Barycenters;
  137. igl::barycenter(sData.V,sData.F,Barycenters);
  138. //cout << "Barycenters.rows() = " << Barycenters.rows() << endl;
  139. //double t = double((key - '1')+1) / 9.0;
  140. double view_depth = 10.;
  141. double t = view_depth/9.;
  142. VectorXd v = Barycenters.col(2).array() - Barycenters.col(2).minCoeff();
  143. v /= v.col(0).maxCoeff();
  144. vector<int> s;
  145. for (unsigned i=0; i<v.size();++i)
  146. if (v(i) < t)
  147. s.push_back(i);
  148. V_temp.resize(s.size()*4,3);
  149. F_temp.resize(s.size()*4,3);
  150. for (unsigned i=0; i<s.size();++i){
  151. V_temp.row(i*4+0) = sData.V_o.row(sData.F(s[i],0));
  152. V_temp.row(i*4+1) = sData.V_o.row(sData.F(s[i],1));
  153. V_temp.row(i*4+2) = sData.V_o.row(sData.F(s[i],2));
  154. V_temp.row(i*4+3) = sData.V_o.row(sData.F(s[i],3));
  155. F_temp.row(i*4+0) << (i*4)+0, (i*4)+1, (i*4)+3;
  156. F_temp.row(i*4+1) << (i*4)+0, (i*4)+2, (i*4)+1;
  157. F_temp.row(i*4+2) << (i*4)+3, (i*4)+2, (i*4)+0;
  158. F_temp.row(i*4+3) << (i*4)+1, (i*4)+2, (i*4)+3;
  159. }
  160. viewer.data().set_mesh(V_temp,F_temp);
  161. viewer.core.align_camera_center(V_temp,F_temp);
  162. viewer.data().set_face_based(true);
  163. viewer.data().show_lines = true;
  164. }
  165. int main(int argc, char *argv[]) {
  166. cerr << "Press space for running an iteration." << std::endl;
  167. cerr << "Syntax: " << argv[0] << " demo_number (1 to 3)" << std::endl;
  168. cerr << "1. 2D unconstrained parametrization" << std::endl;
  169. cerr << "2. 2D deformation with positional constraints" << std::endl;
  170. cerr << "3. 3D mesh deformation with positional constraints" << std::endl;
  171. demo_type = PARAM_2D;
  172. if (argc == 2) {
  173. switch (std::atoi(argv[1])) {
  174. case 1: {
  175. demo_type = PARAM_2D;
  176. break;
  177. } case 2: {
  178. demo_type = SOFT_CONST;
  179. break;
  180. } case 3: {
  181. demo_type = DEFORM_3D;
  182. break;
  183. }
  184. default: {
  185. cerr << "Wrong demo number - Please choose one between 1-3" << std:: endl;
  186. exit(1);
  187. }
  188. }
  189. }
  190. // Launch the viewer
  191. igl::opengl::glfw::Viewer viewer;
  192. viewer.callback_key_down = &key_down;
  193. // Disable wireframe
  194. viewer.data().show_lines = false;
  195. // Draw checkerboard texture
  196. viewer.data().show_texture = false;
  197. // First iteration
  198. key_down(viewer, ' ', 0);
  199. viewer.launch();
  200. return 0;
  201. }
  202. void check_mesh_for_issues(Eigen::MatrixXd& V, Eigen::MatrixXi& F) {
  203. Eigen::SparseMatrix<double> A;
  204. igl::adjacency_matrix(F,A);
  205. Eigen::MatrixXi C, Ci;
  206. igl::components(A, C, Ci);
  207. int connected_components = Ci.rows();
  208. if (connected_components!=1) {
  209. cout << "Error! Input has multiple connected components" << endl; exit(1);
  210. }
  211. int euler_char = igl::euler_characteristic(V, F);
  212. if (euler_char!=1)
  213. {
  214. cout <<
  215. "Error! Input does not have a disk topology, it's euler char is " <<
  216. euler_char << endl;
  217. exit(1);
  218. }
  219. bool is_edge_manifold = igl::is_edge_manifold(F);
  220. if (!is_edge_manifold) {
  221. cout << "Error! Input is not an edge manifold" << endl; exit(1);
  222. }
  223. Eigen::VectorXd areas; igl::doublearea(V,F,areas);
  224. const double eps = 1e-14;
  225. for (int i = 0; i < areas.rows(); i++) {
  226. if (areas(i) < eps) {
  227. cout << "Error! Input has zero area faces" << endl; exit(1);
  228. }
  229. }
  230. }
  231. void get_soft_constraint_for_circle(Eigen::MatrixXd& V_o, Eigen::MatrixXi& F, Eigen::VectorXi& b, Eigen::MatrixXd& bc) {
  232. Eigen::VectorXi bnd;
  233. igl::boundary_loop(F,bnd);
  234. const int B_STEPS = 22; // constraint every B_STEPS vertices of the boundary
  235. b.resize(bnd.rows()/B_STEPS);
  236. bc.resize(b.rows(),2);
  237. int c_idx = 0;
  238. for (int i = B_STEPS; i < bnd.rows(); i+=B_STEPS) {
  239. b(c_idx) = bnd(i);
  240. c_idx++;
  241. }
  242. bc.row(0) = V_o.row(b(0)); // keep it there for now
  243. bc.row(1) = V_o.row(b(2));
  244. bc.row(2) = V_o.row(b(3));
  245. bc.row(3) = V_o.row(b(4));
  246. bc.row(4) = V_o.row(b(5));
  247. bc.row(0) << V_o(b(0),0), 0;
  248. bc.row(4) << V_o(b(4),0), 0;
  249. bc.row(2) << V_o(b(2),0), 0.1;
  250. bc.row(3) << V_o(b(3),0), 0.05;
  251. bc.row(1) << V_o(b(1),0), -0.15;
  252. bc.row(5) << V_o(b(5),0), +0.15;
  253. }
  254. void get_cube_corner_constraints(Eigen::MatrixXd& V, Eigen::MatrixXi& F, Eigen::VectorXi& b, Eigen::MatrixXd& bc) {
  255. double min_x,max_x,min_y,max_y,min_z,max_z;
  256. min_x = V.col(0).minCoeff(); max_x = V.col(0).maxCoeff();
  257. min_y = V.col(1).minCoeff(); max_y = V.col(1).maxCoeff();
  258. min_z = V.col(2).minCoeff(); max_z = V.col(2).maxCoeff();
  259. // get all cube corners
  260. b.resize(8,1); bc.resize(8,3);
  261. int x;
  262. for (int i = 0; i < V.rows(); i++) {
  263. if (V.row(i) == Eigen::RowVector3d(min_x,min_y,min_z)) b(0) = i;
  264. if (V.row(i) == Eigen::RowVector3d(min_x,min_y,max_z)) b(1) = i;
  265. if (V.row(i) == Eigen::RowVector3d(min_x,max_y,min_z)) b(2) = i;
  266. if (V.row(i) == Eigen::RowVector3d(min_x,max_y,max_z)) b(3) = i;
  267. if (V.row(i) == Eigen::RowVector3d(max_x,min_y,min_z)) b(4) = i;
  268. if (V.row(i) == Eigen::RowVector3d(max_x,max_y,min_z)) b(5) = i;
  269. if (V.row(i) == Eigen::RowVector3d(max_x,min_y,max_z)) b(6) = i;
  270. if (V.row(i) == Eigen::RowVector3d(max_x,max_y,max_z)) b(7) = i;
  271. }
  272. // get all cube edges
  273. std::set<int> cube_edge1; Eigen::VectorXi cube_edge1_vec;
  274. for (int i = 0; i < V.rows(); i++) {
  275. if ((V(i,0) == min_x && V(i,1) == min_y)) {
  276. cube_edge1.insert(i);
  277. }
  278. }
  279. Eigen::VectorXi edge1;
  280. int_set_to_eigen_vector(cube_edge1, edge1);
  281. std::set<int> cube_edge2; Eigen::VectorXi edge2;
  282. for (int i = 0; i < V.rows(); i++) {
  283. if ((V(i,0) == max_x && V(i,1) == max_y)) {
  284. cube_edge2.insert(i);
  285. }
  286. }
  287. int_set_to_eigen_vector(cube_edge2, edge2);
  288. b = igl::cat(1,edge1,edge2);
  289. std::set<int> cube_edge3; Eigen::VectorXi edge3;
  290. for (int i = 0; i < V.rows(); i++) {
  291. if ((V(i,0) == max_x && V(i,1) == min_y)) {
  292. cube_edge3.insert(i);
  293. }
  294. }
  295. int_set_to_eigen_vector(cube_edge3, edge3);
  296. b = igl::cat(1,b,edge3);
  297. std::set<int> cube_edge4; Eigen::VectorXi edge4;
  298. for (int i = 0; i < V.rows(); i++) {
  299. if ((V(i,0) == min_x && V(i,1) == max_y)) {
  300. cube_edge4.insert(i);
  301. }
  302. }
  303. int_set_to_eigen_vector(cube_edge4, edge4);
  304. b = igl::cat(1,b,edge4);
  305. bc.resize(b.rows(),3);
  306. Eigen::Matrix3d m; m = Eigen::AngleAxisd(0.3 * igl::PI, Eigen::Vector3d(1./sqrt(2.),1./sqrt(2.),0.)/*Eigen::Vector3d::UnitX()*/);
  307. int i = 0;
  308. for (; i < cube_edge1.size(); i++) {
  309. Eigen::RowVector3d edge_rot_center(min_x,min_y,(min_z+max_z)/2.);
  310. bc.row(i) = (V.row(b(i)) - edge_rot_center) * m + edge_rot_center;
  311. }
  312. for (; i < cube_edge1.size() + cube_edge2.size(); i++) {
  313. Eigen::RowVector3d edge_rot_center(max_x,max_y,(min_z+max_z)/2.);
  314. bc.row(i) = (V.row(b(i)) - edge_rot_center) * m.transpose() + edge_rot_center;
  315. }
  316. for (; i < cube_edge1.size() + cube_edge2.size() + cube_edge3.size(); i++) {
  317. bc.row(i) = 0.75*V.row(b(i));
  318. }
  319. for (; i < b.rows(); i++) {
  320. bc.row(i) = 0.75*V.row(b(i));
  321. }
  322. }
  323. void int_set_to_eigen_vector(const std::set<int>& int_set, Eigen::VectorXi& vec) {
  324. vec.resize(int_set.size()); int idx = 0;
  325. for(auto f : int_set) {
  326. vec(idx) = f; idx++;
  327. }
  328. }