12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148 |
- // This file is part of libigl, a simple c++ geometry processing library.
- //
- // Copyright (C) 2015 Alec Jacobson <alecjacobson@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla Public License
- // v. 2.0. If a copy of the MPL was not distributed with this file, You can
- // obtain one at http://mozilla.org/MPL/2.0/.
- #ifndef IGL_AABB_H
- #define IGL_AABB_H
- #include <Eigen/Core>
- #include <Eigen/Geometry>
- #include <vector>
- namespace igl
- {
- // Implementation of semi-general purpose axis-aligned bounding box hierarchy.
- // The mesh (V,Ele) is stored and managed by the caller and each routine here
- // simply takes it as references (it better not change between calls).
- //
- // It's a little annoying that the Dimension is a template parameter and not
- // picked up at run time from V. This leads to duplicated code for 2d/3d (up to
- // dim).
- template <typename DerivedV, int DIM>
- class AABB
- {
- public:
- typedef typename DerivedV::Scalar Scalar;
- typedef Eigen::Matrix<Scalar,1,DIM> RowVectorDIMS;
- typedef Eigen::Matrix<Scalar,DIM,1> VectorDIMS;
- typedef Eigen::Matrix<Scalar,Eigen::Dynamic,DIM> MatrixXDIMS;
- // Shared pointers are slower...
- AABB * m_left;
- AABB * m_right;
- Eigen::AlignedBox<Scalar,DIM> m_box;
- // -1 non-leaf
- int m_primitive;
- //Scalar m_max_sqr_d;
- //int m_depth;
- AABB():
- m_left(NULL), m_right(NULL),
- m_box(), m_primitive(-1)
- //m_max_sqr_d(std::numeric_limits<double>::infinity()),
- //m_depth(0)
- {}
- // http://stackoverflow.com/a/3279550/148668
- AABB(const AABB& other):
- m_left(other.m_left ? new AABB(*other.m_left) : NULL),
- m_right(other.m_right ? new AABB(*other.m_right) : NULL),
- m_box(other.m_box),
- m_primitive(other.m_primitive)
- //m_max_sqr_d(other.m_max_sqr_d),
- //m_depth(std::max(
- // m_left ? m_left->m_depth + 1 : 0,
- // m_right ? m_right->m_depth + 1 : 0))
- {
- }
- // copy-swap idiom
- friend void swap(AABB& first, AABB& second)
- {
- // Enable ADL
- using std::swap;
- swap(first.m_left,second.m_left);
- swap(first.m_right,second.m_right);
- swap(first.m_box,second.m_box);
- swap(first.m_primitive,second.m_primitive);
- //swap(first.m_max_sqr_d,second.m_max_sqr_d);
- //swap(first.m_depth,second.m_depth);
- }
- // Pass-by-value (aka copy)
- AABB& operator=(AABB other)
- {
- swap(*this,other);
- return *this;
- }
- AABB(AABB&& other):
- // initialize via default constructor
- AABB()
- {
- swap(*this,other);
- }
- // Seems like there should have been an elegant solution to this using
- // the copy-swap idiom above:
- inline void deinit()
- {
- m_primitive = -1;
- m_box = Eigen::AlignedBox<Scalar,DIM>();
- delete m_left;
- m_left = NULL;
- delete m_right;
- m_right = NULL;
- }
- ~AABB()
- {
- deinit();
- }
- // Build an Axis-Aligned Bounding Box tree for a given mesh and given
- // serialization of a previous AABB tree.
- //
- // Inputs:
- // V #V by dim list of mesh vertex positions.
- // Ele #Ele by dim+1 list of mesh indices into #V.
- // bb_mins max_tree by dim list of bounding box min corner positions
- // bb_maxs max_tree by dim list of bounding box max corner positions
- // elements max_tree list of element or (not leaf id) indices into Ele
- // i recursive call index {0}
- template <typename Derivedbb_mins, typename Derivedbb_maxs>
- inline void init(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele,
- const Eigen::PlainObjectBase<Derivedbb_mins> & bb_mins,
- const Eigen::PlainObjectBase<Derivedbb_maxs> & bb_maxs,
- const Eigen::VectorXi & elements,
- const int i = 0);
- // Wrapper for root with empty serialization
- inline void init(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele);
- // Build an Axis-Aligned Bounding Box tree for a given mesh.
- //
- // Inputs:
- // V #V by dim list of mesh vertex positions.
- // Ele #Ele by dim+1 list of mesh indices into #V.
- // SI #Ele by dim list revealing for each coordinate where Ele's
- // barycenters would be sorted: SI(e,d) = i --> the dth coordinate of
- // the barycenter of the eth element would be placed at position i in a
- // sorted list.
- // I #I list of indices into Ele of elements to include (for recursive
- // calls)
- //
- inline void init(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele,
- const Eigen::MatrixXi & SI,
- const Eigen::VectorXi & I);
- // Return whether at leaf node
- inline bool is_leaf() const;
- // Find the indices of elements containing given point.
- //
- // Inputs:
- // V #V by dim list of mesh vertex positions. **Should be same as used to
- // construct mesh.**
- // Ele #Ele by dim+1 list of mesh indices into #V. **Should be same as used to
- // construct mesh.**
- // q dim row-vector query position
- // first whether to only return first element containing q
- // Returns:
- // list of indices of elements containing q
- template <typename Derivedq>
- inline std::vector<int> find(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele,
- const Eigen::PlainObjectBase<Derivedq> & q,
- const bool first=false) const;
- // If number of elements m then total tree size should be 2*h where h is
- // the deepest depth 2^ceil(log(#Ele*2-1))
- inline int subtree_size() const;
- // Serialize this class into 3 arrays (so we can pass it pack to matlab)
- //
- // Outputs:
- // bb_mins max_tree by dim list of bounding box min corner positions
- // bb_maxs max_tree by dim list of bounding box max corner positions
- // elements max_tree list of element or (not leaf id) indices into Ele
- // i recursive call index into these arrays {0}
- template <typename Derivedbb_mins, typename Derivedbb_maxs>
- inline void serialize(
- Eigen::PlainObjectBase<Derivedbb_mins> & bb_mins,
- Eigen::PlainObjectBase<Derivedbb_maxs> & bb_maxs,
- Eigen::VectorXi & elements,
- const int i = 0) const;
- // Compute squared distance to a query point
- //
- // Inputs:
- // V #V by dim list of vertex positions
- // Ele #Ele by dim list of simplex indices
- // P 3 list of query point coordinates
- // min_sqr_d current minimum squared distance (only find distances
- // less than this)
- // Outputs:
- // I #P list of facet indices corresponding to smallest distances
- // C #P by 3 list of closest points
- // Returns squared distance
- //
- // Known bugs: currently assumes Elements are triangles regardless of
- // dimension.
- inline Scalar squared_distance(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele,
- const RowVectorDIMS & p,
- int & i,
- RowVectorDIMS & c) const;
- //private:
- inline Scalar squared_distance(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele,
- const RowVectorDIMS & p,
- const Scalar min_sqr_d,
- int & i,
- RowVectorDIMS & c) const;
- public:
- template <
- typename DerivedP,
- typename DerivedsqrD,
- typename DerivedI,
- typename DerivedC>
- inline void squared_distance(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele,
- const Eigen::PlainObjectBase<DerivedP> & P,
- Eigen::PlainObjectBase<DerivedsqrD> & sqrD,
- Eigen::PlainObjectBase<DerivedI> & I,
- Eigen::PlainObjectBase<DerivedC> & C) const;
- template <
- typename Derivedother_V,
- typename DerivedsqrD,
- typename DerivedI,
- typename DerivedC>
- inline void squared_distance(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele,
- const AABB<Derivedother_V,DIM> & other,
- const Eigen::PlainObjectBase<Derivedother_V> & other_V,
- const Eigen::MatrixXi & other_Ele,
- Eigen::PlainObjectBase<DerivedsqrD> & sqrD,
- Eigen::PlainObjectBase<DerivedI> & I,
- Eigen::PlainObjectBase<DerivedC> & C) const;
- private:
- template <
- typename Derivedother_V,
- typename DerivedsqrD,
- typename DerivedI,
- typename DerivedC>
- inline Scalar squared_distance_helper(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele,
- const AABB<Derivedother_V,DIM> * other,
- const Eigen::PlainObjectBase<Derivedother_V> & other_V,
- const Eigen::MatrixXi & other_Ele,
- const Scalar min_sqr_d,
- Eigen::PlainObjectBase<DerivedsqrD> & sqrD,
- Eigen::PlainObjectBase<DerivedI> & I,
- Eigen::PlainObjectBase<DerivedC> & C) const;
- // Helper function for leaves: works in-place on sqr_d
- inline void leaf_squared_distance(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele,
- const RowVectorDIMS & p,
- Scalar & sqr_d,
- int & i,
- RowVectorDIMS & c) const;
- inline void set_min(
- const RowVectorDIMS & p,
- const Scalar sqr_d_candidate,
- const int i_candidate,
- const RowVectorDIMS & c_candidate,
- Scalar & sqr_d,
- int & i,
- RowVectorDIMS & c) const;
- public:
- static
- inline void barycentric_coordinates(
- const RowVectorDIMS & p,
- const RowVectorDIMS & a,
- const RowVectorDIMS & b,
- const RowVectorDIMS & c,
- Eigen::Matrix<Scalar,1,3> & bary);
- public:
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW
- };
- }
- // Implementation
- #include "EPS.h"
- #include "barycenter.h"
- #include "colon.h"
- #include "colon.h"
- #include "doublearea.h"
- #include "matlab_format.h"
- #include "project_to_line_segment.h"
- #include "sort.h"
- #include "volume.h"
- #include <iostream>
- #include <iomanip>
- #include <limits>
- #include <list>
- template <typename DerivedV, int DIM>
- template <typename Derivedbb_mins, typename Derivedbb_maxs>
- inline void igl::AABB<DerivedV,DIM>::init(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele,
- const Eigen::PlainObjectBase<Derivedbb_mins> & bb_mins,
- const Eigen::PlainObjectBase<Derivedbb_maxs> & bb_maxs,
- const Eigen::VectorXi & elements,
- const int i)
- {
- using namespace std;
- using namespace Eigen;
- if(bb_mins.size() > 0)
- {
- assert(bb_mins.rows() == bb_maxs.rows() && "Serial tree arrays must match");
- assert(bb_mins.cols() == V.cols() && "Serial tree array dim must match V");
- assert(bb_mins.cols() == bb_maxs.cols() && "Serial tree arrays must match");
- assert(bb_mins.rows() == elements.rows() &&
- "Serial tree arrays must match");
- // construct from serialization
- m_box.extend(bb_mins.row(i).transpose());
- m_box.extend(bb_maxs.row(i).transpose());
- m_primitive = elements(i);
- // Not leaf then recurse
- if(m_primitive == -1)
- {
- m_left = new AABB();
- m_left->init( V,Ele,bb_mins,bb_maxs,elements,2*i+1);
- m_right = new AABB();
- m_right->init( V,Ele,bb_mins,bb_maxs,elements,2*i+2);
- //m_depth = std::max( m_left->m_depth, m_right->m_depth)+1;
- }
- }else
- {
- VectorXi allI = colon<int>(0,Ele.rows()-1);
- MatrixXDIMS BC;
- if(Ele.cols() == 1)
- {
- // points
- BC = V;
- }else
- {
- // Simplices
- barycenter(V,Ele,BC);
- }
- MatrixXi SI(BC.rows(),BC.cols());
- {
- MatrixXDIMS _;
- MatrixXi IS;
- igl::sort(BC,1,true,_,IS);
- // Need SI(i) to tell which place i would be sorted into
- const int dim = IS.cols();
- for(int i = 0;i<IS.rows();i++)
- {
- for(int d = 0;d<dim;d++)
- {
- SI(IS(i,d),d) = i;
- }
- }
- }
- init(V,Ele,SI,allI);
- }
- }
- template <typename DerivedV, int DIM>
- inline void igl::AABB<DerivedV,DIM>::init(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele)
- {
- using namespace Eigen;
- return init(V,Ele,MatrixXDIMS(),MatrixXDIMS(),VectorXi(),0);
- }
- template <typename DerivedV, int DIM>
- inline void igl::AABB<DerivedV,DIM>::init(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele,
- const Eigen::MatrixXi & SI,
- const Eigen::VectorXi & I)
- {
- using namespace Eigen;
- using namespace std;
- assert(DIM == V.cols() && "V.cols() should matched declared dimension");
- //const Scalar inf = numeric_limits<Scalar>::infinity();
- m_box = AlignedBox<Scalar,DIM>();
- // Compute bounding box
- for(int i = 0;i<I.rows();i++)
- {
- for(int c = 0;c<Ele.cols();c++)
- {
- m_box.extend(V.row(Ele(I(i),c)).transpose());
- m_box.extend(V.row(Ele(I(i),c)).transpose());
- }
- }
- switch(I.size())
- {
- case 0:
- {
- assert(false);
- }
- case 1:
- {
- m_primitive = I(0);
- break;
- }
- default:
- {
- // Compute longest direction
- int max_d = -1;
- m_box.diagonal().maxCoeff(&max_d);
- // Can't use median on BC directly because many may have same value,
- // but can use median on sorted BC indices
- VectorXi SIdI(I.rows());
- for(int i = 0;i<I.rows();i++)
- {
- SIdI(i) = SI(I(i),max_d);
- }
- // Since later I use <= I think I don't need to worry about odd/even
- // Pass by copy to avoid changing input
- const auto median = [](VectorXi A)->Scalar
- {
- size_t n = A.size()/2;
- nth_element(A.data(),A.data()+n,A.data()+A.size());
- if(A.rows() % 2 == 1)
- {
- return A(n);
- }else
- {
- nth_element(A.data(),A.data()+n-1,A.data()+A.size());
- return 0.5*(A(n)+A(n-1));
- }
- };
- const Scalar med = median(SIdI);
- VectorXi LI((I.rows()+1)/2),RI(I.rows()/2);
- assert(LI.rows()+RI.rows() == I.rows());
- // Distribute left and right
- {
- int li = 0;
- int ri = 0;
- for(int i = 0;i<I.rows();i++)
- {
- if(SIdI(i)<=med)
- {
- LI(li++) = I(i);
- }else
- {
- RI(ri++) = I(i);
- }
- }
- }
- //m_depth = 0;
- if(LI.rows()>0)
- {
- m_left = new AABB();
- m_left->init(V,Ele,SI,LI);
- //m_depth = std::max(m_depth, m_left->m_depth+1);
- }
- if(RI.rows()>0)
- {
- m_right = new AABB();
- m_right->init(V,Ele,SI,RI);
- //m_depth = std::max(m_depth, m_right->m_depth+1);
- }
- }
- }
- }
- template <typename DerivedV, int DIM>
- inline bool igl::AABB<DerivedV,DIM>::is_leaf() const
- {
- return m_primitive != -1;
- }
- template <typename DerivedV, int DIM>
- template <typename Derivedq>
- inline std::vector<int> igl::AABB<DerivedV,DIM>::find(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele,
- const Eigen::PlainObjectBase<Derivedq> & q,
- const bool first) const
- {
- using namespace std;
- using namespace Eigen;
- assert(q.size() == DIM &&
- "Query dimension should match aabb dimension");
- assert(Ele.cols() == V.cols()+1 &&
- "AABB::find only makes sense for (d+1)-simplices");
- const Scalar epsilon = igl::EPS<Scalar>();
- // Check if outside bounding box
- bool inside = m_box.contains(q.transpose());
- if(!inside)
- {
- return std::vector<int>();
- }
- assert(m_primitive==-1 || (m_left == NULL && m_right == NULL));
- if(is_leaf())
- {
- // Initialize to some value > -epsilon
- Scalar a1=0,a2=0,a3=0,a4=0;
- switch(DIM)
- {
- case 3:
- {
- // Barycentric coordinates
- typedef Eigen::Matrix<Scalar,1,3> RowVector3S;
- const RowVector3S V1 = V.row(Ele(m_primitive,0));
- const RowVector3S V2 = V.row(Ele(m_primitive,1));
- const RowVector3S V3 = V.row(Ele(m_primitive,2));
- const RowVector3S V4 = V.row(Ele(m_primitive,3));
- a1 = volume_single(V2,V4,V3,(RowVector3S)q);
- a2 = volume_single(V1,V3,V4,(RowVector3S)q);
- a3 = volume_single(V1,V4,V2,(RowVector3S)q);
- a4 = volume_single(V1,V2,V3,(RowVector3S)q);
- break;
- }
- case 2:
- {
- // Barycentric coordinates
- typedef Eigen::Matrix<Scalar,2,1> Vector2S;
- const Vector2S V1 = V.row(Ele(m_primitive,0));
- const Vector2S V2 = V.row(Ele(m_primitive,1));
- const Vector2S V3 = V.row(Ele(m_primitive,2));
- // Hack for now to keep templates simple. If becomes bottleneck
- // consider using std::enable_if_t
- const Vector2S q2 = q.head(2);
- a1 = doublearea_single(V1,V2,q2);
- a2 = doublearea_single(V2,V3,q2);
- a3 = doublearea_single(V3,V1,q2);
- break;
- }
- default:assert(false);
- }
- // Normalization is important for correcting sign
- Scalar sum = a1+a2+a3+a4;
- a1 /= sum;
- a2 /= sum;
- a3 /= sum;
- a4 /= sum;
- if(
- a1>=-epsilon &&
- a2>=-epsilon &&
- a3>=-epsilon &&
- a4>=-epsilon)
- {
- return std::vector<int>(1,m_primitive);
- }else
- {
- return std::vector<int>();
- }
- }
- std::vector<int> left = m_left->find(V,Ele,q,first);
- if(first && !left.empty())
- {
- return left;
- }
- std::vector<int> right = m_right->find(V,Ele,q,first);
- if(first)
- {
- return right;
- }
- left.insert(left.end(),right.begin(),right.end());
- return left;
- }
- template <typename DerivedV, int DIM>
- inline int igl::AABB<DerivedV,DIM>::subtree_size() const
- {
- // 1 for self
- int n = 1;
- int n_left = 0,n_right = 0;
- if(m_left != NULL)
- {
- n_left = m_left->subtree_size();
- }
- if(m_right != NULL)
- {
- n_right = m_right->subtree_size();
- }
- n += 2*std::max(n_left,n_right);
- return n;
- }
- template <typename DerivedV, int DIM>
- template <typename Derivedbb_mins, typename Derivedbb_maxs>
- inline void igl::AABB<DerivedV,DIM>::serialize(
- Eigen::PlainObjectBase<Derivedbb_mins> & bb_mins,
- Eigen::PlainObjectBase<Derivedbb_maxs> & bb_maxs,
- Eigen::VectorXi & elements,
- const int i) const
- {
- using namespace std;
- using namespace Eigen;
- // Calling for root then resize output
- if(i==0)
- {
- const int m = subtree_size();
- //cout<<"m: "<<m<<endl;
- bb_mins.resize(m,DIM);
- bb_maxs.resize(m,DIM);
- elements.resize(m,1);
- }
- //cout<<i<<" ";
- bb_mins.row(i) = m_box.min();
- bb_maxs.row(i) = m_box.max();
- elements(i) = m_primitive;
- if(m_left != NULL)
- {
- m_left->serialize(bb_mins,bb_maxs,elements,2*i+1);
- }
- if(m_right != NULL)
- {
- m_right->serialize(bb_mins,bb_maxs,elements,2*i+2);
- }
- }
- template <typename DerivedV, int DIM>
- inline typename igl::AABB<DerivedV,DIM>::Scalar
- igl::AABB<DerivedV,DIM>::squared_distance(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele,
- const RowVectorDIMS & p,
- int & i,
- RowVectorDIMS & c) const
- {
- return squared_distance(V,Ele,p,std::numeric_limits<Scalar>::infinity(),i,c);
- }
- template <typename DerivedV, int DIM>
- inline typename igl::AABB<DerivedV,DIM>::Scalar
- igl::AABB<DerivedV,DIM>::squared_distance(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele,
- const RowVectorDIMS & p,
- Scalar min_sqr_d,
- int & i,
- RowVectorDIMS & c) const
- {
- using namespace Eigen;
- using namespace std;
- using namespace igl;
- Scalar sqr_d = min_sqr_d;
- //assert(DIM == 3 && "Code has only been tested for DIM == 3");
- assert((Ele.cols() == 3 || Ele.cols() == 2 || Ele.cols() == 1)
- && "Code has only been tested for simplex sizes 3,2,1");
- assert(m_primitive==-1 || (m_left == NULL && m_right == NULL));
- if(is_leaf())
- {
- leaf_squared_distance(V,Ele,p,sqr_d,i,c);
- }else
- {
- bool looked_left = false;
- bool looked_right = false;
- const auto & look_left = [&]()
- {
- int i_left;
- RowVectorDIMS c_left = c;
- Scalar sqr_d_left = m_left->squared_distance(V,Ele,p,sqr_d,i_left,c_left);
- set_min(p,sqr_d_left,i_left,c_left,sqr_d,i,c);
- looked_left = true;
- };
- const auto & look_right = [&]()
- {
- int i_right;
- RowVectorDIMS c_right = c;
- Scalar sqr_d_right = m_right->squared_distance(V,Ele,p,sqr_d,i_right,c_right);
- set_min(p,sqr_d_right,i_right,c_right,sqr_d,i,c);
- looked_right = true;
- };
- // must look left or right if in box
- if(m_left->m_box.contains(p.transpose()))
- {
- look_left();
- }
- if(m_right->m_box.contains(p.transpose()))
- {
- look_right();
- }
- // if haven't looked left and could be less than current min, then look
- Scalar left_min_sqr_d = m_left->m_box.squaredExteriorDistance(p.transpose());
- Scalar right_min_sqr_d = m_right->m_box.squaredExteriorDistance(p.transpose());
- if(left_min_sqr_d < right_min_sqr_d)
- {
- if(!looked_left && left_min_sqr_d<sqr_d)
- {
- look_left();
- }
- if( !looked_right && right_min_sqr_d<sqr_d)
- {
- look_right();
- }
- }else
- {
- if( !looked_right && right_min_sqr_d<sqr_d)
- {
- look_right();
- }
- if(!looked_left && left_min_sqr_d<sqr_d)
- {
- look_left();
- }
- }
- }
- return sqr_d;
- }
- template <typename DerivedV, int DIM>
- template <
- typename DerivedP,
- typename DerivedsqrD,
- typename DerivedI,
- typename DerivedC>
- inline void igl::AABB<DerivedV,DIM>::squared_distance(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele,
- const Eigen::PlainObjectBase<DerivedP> & P,
- Eigen::PlainObjectBase<DerivedsqrD> & sqrD,
- Eigen::PlainObjectBase<DerivedI> & I,
- Eigen::PlainObjectBase<DerivedC> & C) const
- {
- assert(P.cols() == V.cols() && "cols in P should match dim of cols in V");
- sqrD.resize(P.rows(),1);
- I.resize(P.rows(),1);
- C.resize(P.rows(),P.cols());
- for(int p = 0;p<P.rows();p++)
- {
- RowVectorDIMS Pp = P.row(p), c;
- int Ip;
- sqrD(p) = squared_distance(V,Ele,Pp,Ip,c);
- I(p) = Ip;
- C.row(p).head(DIM) = c;
- }
- }
- template <typename DerivedV, int DIM>
- template <
- typename Derivedother_V,
- typename DerivedsqrD,
- typename DerivedI,
- typename DerivedC>
- inline void igl::AABB<DerivedV,DIM>::squared_distance(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele,
- const AABB<Derivedother_V,DIM> & other,
- const Eigen::PlainObjectBase<Derivedother_V> & other_V,
- const Eigen::MatrixXi & other_Ele,
- Eigen::PlainObjectBase<DerivedsqrD> & sqrD,
- Eigen::PlainObjectBase<DerivedI> & I,
- Eigen::PlainObjectBase<DerivedC> & C) const
- {
- assert(other_Ele.cols() == 1 &&
- "Only implemented for other as list of points");
- assert(other_V.cols() == V.cols() && "other must match this dimension");
- sqrD.setConstant(other_Ele.rows(),1,std::numeric_limits<double>::infinity());
- I.resize(other_Ele.rows(),1);
- C.resize(other_Ele.rows(),other_V.cols());
- // All points in other_V currently think they need to check against root of
- // this. The point of using another AABB is to quickly prune chunks of
- // other_V so that most points just check some subtree of this.
- // This holds a conservative estimate of max(sqr_D) where sqr_D is the
- // current best minimum squared distance for all points in this subtree
- double min_sqr_d = std::numeric_limits<double>::infinity();
- squared_distance_helper(
- V,Ele,&other,other_V,other_Ele,min_sqr_d,sqrD,I,C);
- }
- template <typename DerivedV, int DIM>
- template <
- typename Derivedother_V,
- typename DerivedsqrD,
- typename DerivedI,
- typename DerivedC>
- inline typename igl::AABB<DerivedV,DIM>::Scalar igl::AABB<DerivedV,DIM>::squared_distance_helper(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele,
- const AABB<Derivedother_V,DIM> * other,
- const Eigen::PlainObjectBase<Derivedother_V> & other_V,
- const Eigen::MatrixXi & other_Ele,
- const Scalar min_sqr_d,
- Eigen::PlainObjectBase<DerivedsqrD> & sqrD,
- Eigen::PlainObjectBase<DerivedI> & I,
- Eigen::PlainObjectBase<DerivedC> & C) const
- {
- using namespace std;
- using namespace Eigen;
- // This implementation is a bit disappointing. There's no major speed up. Any
- // performance gains seem to come from accidental cache coherency and
- // diminish for larger "other" (the opposite of what was intended).
- // Base case
- if(other->is_leaf() && this->is_leaf())
- {
- Scalar sqr_d = sqrD(other->m_primitive);
- int i = I(other->m_primitive);
- RowVectorDIMS c = C.row( other->m_primitive);
- RowVectorDIMS p = other_V.row(other->m_primitive);
- leaf_squared_distance(V,Ele,p,sqr_d,i,c);
- sqrD( other->m_primitive) = sqr_d;
- I( other->m_primitive) = i;
- C.row(other->m_primitive) = c;
- //cout<<"leaf: "<<sqr_d<<endl;
- //other->m_max_sqr_d = sqr_d;
- return sqr_d;
- }
- if(other->is_leaf())
- {
- Scalar sqr_d = sqrD(other->m_primitive);
- int i = I(other->m_primitive);
- RowVectorDIMS c = C.row( other->m_primitive);
- RowVectorDIMS p = other_V.row(other->m_primitive);
- sqr_d = squared_distance(V,Ele,p,sqr_d,i,c);
- sqrD( other->m_primitive) = sqr_d;
- I( other->m_primitive) = i;
- C.row(other->m_primitive) = c;
- //other->m_max_sqr_d = sqr_d;
- return sqr_d;
- }
- //// Exact minimum squared distance between arbitary primitives inside this and
- //// othre's bounding boxes
- //const auto & min_squared_distance = [&](
- // const AABB<DerivedV,DIM> * A,
- // const AABB<Derivedother_V,DIM> * B)->Scalar
- //{
- // return A->m_box.squaredExteriorDistance(B->m_box);
- //};
- if(this->is_leaf())
- {
- //if(min_squared_distance(this,other) < other->m_max_sqr_d)
- if(true)
- {
- this->squared_distance_helper(
- V,Ele,other->m_left,other_V,other_Ele,0,sqrD,I,C);
- this->squared_distance_helper(
- V,Ele,other->m_right,other_V,other_Ele,0,sqrD,I,C);
- }else
- {
- // This is never reached...
- }
- //// we know other is not a leaf
- //other->m_max_sqr_d = std::max(other->m_left->m_max_sqr_d,other->m_right->m_max_sqr_d);
- return 0;
- }
- // FORCE DOWN TO OTHER LEAF EVAL
- //if(min_squared_distance(this,other) < other->m_max_sqr_d)
- if(true)
- {
- if(true)
- {
- this->squared_distance_helper(
- V,Ele,other->m_left,other_V,other_Ele,0,sqrD,I,C);
- this->squared_distance_helper(
- V,Ele,other->m_right,other_V,other_Ele,0,sqrD,I,C);
- }else // this direction never seems to be faster
- {
- this->m_left->squared_distance_helper(
- V,Ele,other,other_V,other_Ele,0,sqrD,I,C);
- this->m_right->squared_distance_helper(
- V,Ele,other,other_V,other_Ele,0,sqrD,I,C);
- }
- }else
- {
- // this is never reached ... :-(
- }
- //// we know other is not a leaf
- //other->m_max_sqr_d = std::max(other->m_left->m_max_sqr_d,other->m_right->m_max_sqr_d);
- return 0;
- #if 0 // False
- // _Very_ conservative approximation of maximum squared distance between
- // primitives inside this and other's bounding boxes
- const auto & max_squared_distance = [](
- const AABB<DerivedV,DIM> * A,
- const AABB<Derivedother_V,DIM> * B)->Scalar
- {
- AlignedBox<Scalar,DIM> combo = A->m_box;
- combo.extend(B->m_box);
- return combo.diagonal().squaredNorm();
- };
- //// other base-case
- //if(other->is_leaf())
- //{
- // double sqr_d = sqrD(other->m_primitive);
- // int i = I(other->m_primitive);
- // RowVectorDIMS c = C.row(m_primitive);
- // RowVectorDIMS p = other_V.row(m_primitive);
- // leaf_squared_distance(V,Ele,p,sqr_d,i,c);
- // sqrD(other->m_primitive) = sqr_d;
- // I(other->m_primitive) = i;
- // C.row(m_primitive) = c;
- // return;
- //}
- std::vector<const AABB<DerivedV,DIM> * > this_list;
- if(this->is_leaf())
- {
- this_list.push_back(this);
- }else
- {
- assert(this->m_left);
- this_list.push_back(this->m_left);
- assert(this->m_right);
- this_list.push_back(this->m_right);
- }
- std::vector<AABB<Derivedother_V,DIM> *> other_list;
- if(other->is_leaf())
- {
- other_list.push_back(other);
- }else
- {
- assert(other->m_left);
- other_list.push_back(other->m_left);
- assert(other->m_right);
- other_list.push_back(other->m_right);
- }
- //const std::function<Scalar(
- // const AABB<Derivedother_V,DIM> * other)
- // > max_sqr_d = [&sqrD,&max_sqr_d](const AABB<Derivedother_V,DIM> * other)->Scalar
- // {
- // if(other->is_leaf())
- // {
- // return sqrD(other->m_primitive);
- // }else
- // {
- // return std::max(max_sqr_d(other->m_left),max_sqr_d(other->m_right));
- // }
- // };
- //// Potentially recurse on all pairs, if minimum distance is less than running
- //// bound
- //Eigen::Matrix<Scalar,Eigen::Dynamic,1> other_max_sqr_d =
- // Eigen::Matrix<Scalar,Eigen::Dynamic,1>::Constant(other_list.size(),1,min_sqr_d);
- for(size_t child = 0;child<other_list.size();child++)
- {
- auto other_tree = other_list[child];
- Eigen::Matrix<Scalar,Eigen::Dynamic,1> this_max_sqr_d(this_list.size(),1);
- for(size_t t = 0;t<this_list.size();t++)
- {
- const auto this_tree = this_list[t];
- this_max_sqr_d(t) = max_squared_distance(this_tree,other_tree);
- }
- if(this_list.size() ==2 &&
- ( this_max_sqr_d(0) > this_max_sqr_d(1))
- )
- {
- std::swap(this_list[0],this_list[1]);
- //std::swap(this_max_sqr_d(0),this_max_sqr_d(1));
- }
- const Scalar sqr_d = this_max_sqr_d.minCoeff();
- for(size_t t = 0;t<this_list.size();t++)
- {
- const auto this_tree = this_list[t];
- //const auto mm = max_sqr_d(other_tree);
- //const Scalar mc = other_max_sqr_d(child);
- //assert(mc == mm);
- // Only look left/right in this_list if can possible decrease somebody's
- // distance in this_tree.
- const Scalar min_this_other = min_squared_distance(this_tree,other_tree);
- if(
- min_this_other < sqr_d &&
- min_this_other < other_tree->m_max_sqr_d)
- {
- //cout<<"before: "<<other_max_sqr_d(child)<<endl;
- //other_max_sqr_d(child) = std::min(
- // other_max_sqr_d(child),
- // this_tree->squared_distance_helper(
- // V,Ele,other_tree,other_V,other_Ele,other_max_sqr_d(child),sqrD,I,C));
- //cout<<"after: "<<other_max_sqr_d(child)<<endl;
- this_tree->squared_distance_helper(
- V,Ele,other_tree,other_V,other_Ele,0,sqrD,I,C);
- }
- }
- }
- //const Scalar ret = other_max_sqr_d.maxCoeff();
- //const auto mm = max_sqr_d(other);
- //assert(mm == ret);
- //cout<<"non-leaf: "<<ret<<endl;
- //return ret;
- if(!other->is_leaf())
- {
- other->m_max_sqr_d = std::max(other->m_left->m_max_sqr_d,other->m_right->m_max_sqr_d);
- }
- return 0;
- #endif
- }
- template <typename DerivedV, int DIM>
- inline void igl::AABB<DerivedV,DIM>::leaf_squared_distance(
- const Eigen::PlainObjectBase<DerivedV> & V,
- const Eigen::MatrixXi & Ele,
- const RowVectorDIMS & p,
- Scalar & sqr_d,
- int & i,
- RowVectorDIMS & c) const
- {
- using namespace Eigen;
- using namespace igl;
- using namespace std;
- // Simplex size
- const size_t ss = Ele.cols();
- // Only one element per node
- // plane unit normal
- bool inside_triangle = false;
- Scalar d_j = std::numeric_limits<Scalar>::infinity();
- RowVectorDIMS pp;
- // Only consider triangles, and non-degenerate triangles at that
- if(ss == 3 &&
- Ele(m_primitive,0) != Ele(m_primitive,1) &&
- Ele(m_primitive,1) != Ele(m_primitive,2) &&
- Ele(m_primitive,2) != Ele(m_primitive,0))
- {
- assert(DIM == 3 && "Only implemented for 3D triangles");
- typedef Eigen::Matrix<Scalar,1,3> RowVector3S;
- // can't be const because of annoying DIM template
- RowVector3S v10(0,0,0);
- v10.head(DIM) = (V.row(Ele(m_primitive,1))- V.row(Ele(m_primitive,0)));
- RowVector3S v20(0,0,0);
- v20.head(DIM) = (V.row(Ele(m_primitive,2))- V.row(Ele(m_primitive,0)));
- const RowVectorDIMS n = (v10.cross(v20)).head(DIM);
- Scalar n_norm = n.norm();
- if(n_norm > 0)
- {
- const RowVectorDIMS un = n/n.norm();
- // vector to plane
- const RowVectorDIMS bc =
- 1./3.*
- ( V.row(Ele(m_primitive,0))+
- V.row(Ele(m_primitive,1))+
- V.row(Ele(m_primitive,2)));
- const auto & v = p-bc;
- // projected point on plane
- d_j = v.dot(un);
- pp = p - d_j*un;
- // determine if pp is inside triangle
- Eigen::Matrix<Scalar,1,3> b;
- barycentric_coordinates(
- pp,
- V.row(Ele(m_primitive,0)),
- V.row(Ele(m_primitive,1)),
- V.row(Ele(m_primitive,2)),
- b);
- inside_triangle = fabs(fabs(b(0)) + fabs(b(1)) + fabs(b(2)) - 1.) <= 1e-10;
- }
- }
- const auto & point_point_squared_distance = [&](const RowVectorDIMS & s)
- {
- const Scalar sqr_d_s = (p-s).squaredNorm();
- set_min(p,sqr_d_s,m_primitive,s,sqr_d,i,c);
- };
- if(inside_triangle)
- {
- // point-triangle squared distance
- const Scalar sqr_d_j = d_j*d_j;
- //cout<<"point-triangle..."<<endl;
- set_min(p,sqr_d_j,m_primitive,pp,sqr_d,i,c);
- }else
- {
- if(ss >= 2)
- {
- // point-segment distance
- // number of edges
- size_t ne = ss==3?3:1;
- for(size_t x = 0;x<ne;x++)
- {
- const size_t e1 = Ele(m_primitive,(x+1)%ss);
- const size_t e2 = Ele(m_primitive,(x+2)%ss);
- const RowVectorDIMS & s = V.row(e1);
- const RowVectorDIMS & d = V.row(e2);
- // Degenerate edge
- if(e1 == e2 || (s-d).squaredNorm()==0)
- {
- // only consider once
- if(e1 < e2)
- {
- point_point_squared_distance(s);
- }
- continue;
- }
- Matrix<Scalar,1,1> sqr_d_j_x(1,1);
- Matrix<Scalar,1,1> t(1,1);
- project_to_line_segment(p,s,d,t,sqr_d_j_x);
- const RowVectorDIMS q = s+t(0)*(d-s);
- set_min(p,sqr_d_j_x(0),m_primitive,q,sqr_d,i,c);
- }
- }else
- {
- // So then Ele is just a list of points...
- assert(ss == 1);
- const RowVectorDIMS & s = V.row(Ele(m_primitive,0));
- point_point_squared_distance(s);
- }
- }
- }
- template <typename DerivedV, int DIM>
- inline void igl::AABB<DerivedV,DIM>::set_min(
- const RowVectorDIMS & p,
- const Scalar sqr_d_candidate,
- const int i_candidate,
- const RowVectorDIMS & c_candidate,
- Scalar & sqr_d,
- int & i,
- RowVectorDIMS & c) const
- {
- #ifndef NDEBUG
- //std::cout<<matlab_format(c_candidate,"c_candidate")<<std::endl;
- const Scalar pc_norm = (p-c_candidate).squaredNorm();
- const Scalar diff = fabs(sqr_d_candidate - pc_norm);
- assert(diff<=1e-10 && "distance should match norm of difference");
- #endif
- if(sqr_d_candidate < sqr_d)
- {
- i = i_candidate;
- c = c_candidate;
- sqr_d = sqr_d_candidate;
- }
- }
- template <typename DerivedV, int DIM>
- inline void
- igl::AABB<DerivedV,DIM>::barycentric_coordinates(
- const RowVectorDIMS & p,
- const RowVectorDIMS & a,
- const RowVectorDIMS & b,
- const RowVectorDIMS & c,
- Eigen::Matrix<Scalar,1,3> & bary)
- {
- // http://gamedev.stackexchange.com/a/23745
- const RowVectorDIMS v0 = b - a;
- const RowVectorDIMS v1 = c - a;
- const RowVectorDIMS v2 = p - a;
- Scalar d00 = v0.dot(v0);
- Scalar d01 = v0.dot(v1);
- Scalar d11 = v1.dot(v1);
- Scalar d20 = v2.dot(v0);
- Scalar d21 = v2.dot(v1);
- Scalar denom = d00 * d11 - d01 * d01;
- bary(1) = (d11 * d20 - d01 * d21) / denom;
- bary(2) = (d00 * d21 - d01 * d20) / denom;
- bary(0) = 1.0f - bary(1) - bary(2);
- }
- #endif
|