123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367 |
- // This file is part of libigl, a simple c++ geometry processing library.
- //
- // Copyright (C) 2016 Alec Jacobson <alecjacobson@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla Public License
- // v. 2.0. If a copy of the MPL was not distributed with this file, You can
- // obtain one at http://mozilla.org/MPL/2.0/.
- #include "minkowski_sum.h"
- #include "mesh_boolean.h"
- #include "../../slice_mask.h"
- #include "../../unique.h"
- #include "../../get_seconds.h"
- #include "../../edges.h"
- #include "../cgal/assign_scalar.h"
- #include <CGAL/Exact_predicates_exact_constructions_kernel.h>
- #include <cassert>
- #include <vector>
- template <
- typename DerivedVA,
- typename DerivedFA,
- typename DerivedVB,
- typename DerivedFB,
- typename DerivedW,
- typename DerivedG,
- typename DerivedJ>
- IGL_INLINE void igl::copyleft::boolean::minkowski_sum(
- const Eigen::PlainObjectBase<DerivedVA> & VA,
- const Eigen::PlainObjectBase<DerivedFA> & FA,
- const Eigen::PlainObjectBase<DerivedVB> & VB,
- const Eigen::PlainObjectBase<DerivedFB> & FB,
- const bool resolve_overlaps,
- Eigen::PlainObjectBase<DerivedW> & W,
- Eigen::PlainObjectBase<DerivedG> & G,
- Eigen::PlainObjectBase<DerivedJ> & J)
- {
- using namespace std;
- using namespace Eigen;
- assert(FA.cols() == 3 && "FA must contain a closed triangle mesh");
- assert(FB.cols() <= FA.cols() &&
- "FB must contain lower diemnsional simplices than FA");
- const auto tictoc = []()->double
- {
- static double t_start;
- double now = igl::get_seconds();
- double interval = now-t_start;
- t_start = now;
- return interval;
- };
- tictoc();
- Matrix<typename DerivedFB::Scalar,Dynamic,2> EB;
- edges(FB,EB);
- Matrix<typename DerivedFA::Scalar,Dynamic,2> EA(0,2);
- if(FB.cols() == 3)
- {
- edges(FA,EA);
- }
- // number of copies of A along edges of B
- const int n_ab = EB.rows();
- // number of copies of B along edges of A
- const int n_ba = EA.rows();
- vector<DerivedW> vW(n_ab + n_ba);
- vector<DerivedG> vG(n_ab + n_ba);
- vector<DerivedJ> vJ(n_ab + n_ba);
- vector<int> offsets(n_ab + n_ba + 1);
- offsets[0] = 0;
- // sweep A along edges of B
- for(int e = 0;e<n_ab;e++)
- {
- Matrix<typename DerivedJ::Scalar,Dynamic,1> eJ;
- minkowski_sum(
- VA,
- FA,
- VB.row(EB(e,0)).eval(),
- VB.row(EB(e,1)).eval(),
- false,
- vW[e],
- vG[e],
- eJ);
- assert(vG[e].rows() == eJ.rows());
- assert(eJ.cols() == 1);
- vJ[e].resize(vG[e].rows(),2);
- vJ[e].col(0) = eJ;
- vJ[e].col(1).setConstant(e);
- offsets[e+1] = offsets[e] + vW[e].rows();
- }
- // sweep B along edges of A
- for(int e = 0;e<n_ba;e++)
- {
- Matrix<typename DerivedJ::Scalar,Dynamic,1> eJ;
- const int ee = n_ab+e;
- minkowski_sum(
- VB,
- FB,
- VA.row(EA(e,0)).eval(),
- VA.row(EA(e,1)).eval(),
- false,
- vW[ee],
- vG[ee],
- eJ);
- vJ[ee].resize(vG[ee].rows(),2);
- vJ[ee].col(0) = eJ.array() + (FA.rows()+1);
- vJ[ee].col(1).setConstant(ee);
- }
- // Combine meshes
- int n=0,m=0;
- for_each(vW.begin(),vW.end(),[&n](const DerivedW & w){n+=w.rows();});
- for_each(vG.begin(),vG.end(),[&m](const DerivedG & g){m+=g.rows();});
- assert(n == offsets.back());
- W.resize(n,3);
- G.resize(m,3);
- J.resize(m,2);
- {
- int m_off = 0,n_off = 0;
- for(int i = 0;i<vG.size();i++)
- {
- W.block(n_off,0,vW[i].rows(),3) = vW[i];
- G.block(m_off,0,vG[i].rows(),3) = vG[i].array()+offsets[i];
- J.block(m_off,0,vJ[i].rows(),2) = vJ[i];
- n_off += vW[i].rows();
- m_off += vG[i].rows();
- }
- assert(n == n_off);
- assert(m == m_off);
- }
- if(resolve_overlaps)
- {
- Eigen::Matrix<typename DerivedJ::Scalar, Eigen::Dynamic,1> SJ;
- mesh_boolean(
- DerivedW(W),
- DerivedG(G),
- Matrix<typename DerivedW::Scalar,Dynamic,Dynamic>(),
- Matrix<typename DerivedG::Scalar,Dynamic,Dynamic>(),
- MESH_BOOLEAN_TYPE_UNION,
- W,
- G,
- SJ);
- J = slice(DerivedJ(J),SJ,1);
- }
- }
- template <
- typename DerivedVA,
- typename DerivedFA,
- typename sType, int sCols, int sOptions,
- typename dType, int dCols, int dOptions,
- typename DerivedW,
- typename DerivedG,
- typename DerivedJ>
- IGL_INLINE void igl::copyleft::boolean::minkowski_sum(
- const Eigen::PlainObjectBase<DerivedVA> & VA,
- const Eigen::PlainObjectBase<DerivedFA> & FA,
- const Eigen::Matrix<sType,1,sCols,sOptions> & s,
- const Eigen::Matrix<dType,1,dCols,dOptions> & d,
- const bool resolve_overlaps,
- Eigen::PlainObjectBase<DerivedW> & W,
- Eigen::PlainObjectBase<DerivedG> & G,
- Eigen::PlainObjectBase<DerivedJ> & J)
- {
- using namespace Eigen;
- using namespace std;
- assert(s.cols() == 3 && "s should be a 3d point");
- assert(d.cols() == 3 && "d should be a 3d point");
- // silly base case
- if(FA.size() == 0)
- {
- W.resize(0,3);
- G.resize(0,3);
- return;
- }
- const int dim = VA.cols();
- assert(dim == 3 && "dim must be 3D");
- assert(s.size() == 3 && "s must be 3D point");
- assert(d.size() == 3 && "d must be 3D point");
- // segment vector
- const CGAL::Vector_3<CGAL::Epeck> v(d(0)-s(0),d(1)-s(1),d(2)-s(2));
- // number of vertices
- const int n = VA.rows();
- // duplicate vertices at s and d, we'll remove unreferernced later
- W.resize(2*n,dim);
- for(int i = 0;i<n;i++)
- {
- for(int j = 0;j<dim;j++)
- {
- W (i,j) = VA(i,j) + s(j);
- W(i+n,j) = VA(i,j) + d(j);
- }
- }
- // number of faces
- const int m = FA.rows();
- // Mask whether positive dot product, or negative: because of exactly zero,
- // these are not necessarily complementary
- Matrix<bool,Dynamic,1> P(m,1),N(m,1);
- // loop over faces
- int mp = 0,mn = 0;
- for(int f = 0;f<m;f++)
- {
- const CGAL::Plane_3<CGAL::Epeck> plane(
- CGAL::Point_3<CGAL::Epeck>(VA(FA(f,0),0),VA(FA(f,0),1),VA(FA(f,0),2)),
- CGAL::Point_3<CGAL::Epeck>(VA(FA(f,1),0),VA(FA(f,1),1),VA(FA(f,1),2)),
- CGAL::Point_3<CGAL::Epeck>(VA(FA(f,2),0),VA(FA(f,2),1),VA(FA(f,2),2)));
- const auto normal = plane.orthogonal_vector();
- const auto dt = normal * v;
- if(dt > 0)
- {
- P(f) = true;
- N(f) = false;
- mp++;
- }else if(dt < 0)
- {
- P(f) = false;
- N(f) = true;
- mn++;
- }else
- {
- P(f) = false;
- N(f) = false;
- }
- }
- typedef Matrix<typename DerivedG::Scalar,Dynamic,Dynamic> MatrixXI;
- typedef Matrix<typename DerivedG::Scalar,Dynamic,1> VectorXI;
- MatrixXI GT(mp+mn,3);
- GT<< slice_mask(FA,N,1), slice_mask((FA.array()+n).eval(),P,1);
- // J indexes FA for parts at s and m+FA for parts at d
- J = DerivedJ::LinSpaced(m,0,m-1);
- DerivedJ JT(mp+mn);
- JT << slice_mask(J,P,1), slice_mask(J,N,1);
- JT.block(mp,0,mn,1).array()+=m;
- // Original non-co-planar faces with positively oriented reversed
- MatrixXI BA(mp+mn,3);
- BA << slice_mask(FA,P,1).rowwise().reverse(), slice_mask(FA,N,1);
- // Quads along **all** sides
- MatrixXI GQ((mp+mn)*3,4);
- GQ<<
- BA.col(1), BA.col(0), BA.col(0).array()+n, BA.col(1).array()+n,
- BA.col(2), BA.col(1), BA.col(1).array()+n, BA.col(2).array()+n,
- BA.col(0), BA.col(2), BA.col(2).array()+n, BA.col(0).array()+n;
- MatrixXI uGQ;
- VectorXI S,sI,sJ;
- //const auto & total_signed_distance =
- [](
- const MatrixXI & F,
- VectorXI & S,
- MatrixXI & uF,
- VectorXI & I,
- VectorXI & J)
- {
- const int m = F.rows();
- const int d = F.cols();
- MatrixXI sF = F;
- const auto MN = sF.rowwise().minCoeff().eval();
- // rotate until smallest index is first
- for(int p = 0;p<d;p++)
- {
- for(int f = 0;f<m;f++)
- {
- if(sF(f,0) != MN(f))
- {
- for(int r = 0;r<d-1;r++)
- {
- std::swap(sF(f,r),sF(f,r+1));
- }
- }
- }
- }
- // swap orienation
- for(int f = 0;f<m;f++)
- {
- if(sF(f,d-1) < sF(f,1))
- {
- sF.block(f,1,1,d-1) = sF.block(f,1,1,d-1).reverse().eval();
- }
- }
- Matrix<bool,Dynamic,1> M = Matrix<bool,Dynamic,1>::Zero(m,1);
- {
- VectorXI P = VectorXI::LinSpaced(d,0,d-1);
- for(int p = 0;p<d;p++)
- {
- for(int f = 0;f<m;f++)
- {
- bool all = true;
- for(int r = 0;r<d;r++)
- {
- all = all && (sF(f,P(r)) == F(f,r));
- }
- M(f) = M(f) || all;
- }
- for(int r = 0;r<d-1;r++)
- {
- std::swap(P(r),P(r+1));
- }
- }
- }
- unique_rows(sF,uF,I,J);
- S = VectorXI::Zero(uF.rows(),1);
- assert(m == J.rows());
- for(int f = 0;f<m;f++)
- {
- S(J(f)) += M(f) ? 1 : -1;
- }
- }(MatrixXI(GQ),S,uGQ,sI,sJ);
- assert(S.rows() == uGQ.rows());
- const int nq = (S.array().abs()==2).count();
- GQ.resize(nq,4);
- {
- int k = 0;
- for(int q = 0;q<uGQ.rows();q++)
- {
- switch(S(q))
- {
- case -2:
- GQ.row(k++) = uGQ.row(q).reverse().eval();
- break;
- case 2:
- GQ.row(k++) = uGQ.row(q);
- break;
- default:
- // do not add
- break;
- }
- }
- assert(nq == k);
- }
- G.resize(GT.rows()+2*GQ.rows(),3);
- G<<
- GT,
- GQ.col(0), GQ.col(1), GQ.col(2),
- GQ.col(0), GQ.col(2), GQ.col(3);
- J.resize(JT.rows()+2*GQ.rows(),1);
- J<<JT,DerivedJ::Constant(2*GQ.rows(),1,2*m+1);
- if(resolve_overlaps)
- {
- Eigen::Matrix<typename DerivedJ::Scalar, Eigen::Dynamic,1> SJ;
- mesh_boolean(
- DerivedW(W),DerivedG(G),
- Matrix<typename DerivedVA::Scalar,Dynamic,Dynamic>(),MatrixXI(),
- MESH_BOOLEAN_TYPE_UNION,
- W,G,SJ);
- J = slice(DerivedJ(J),SJ,1);
- }
- }
- template <
- typename DerivedVA,
- typename DerivedFA,
- typename sType, int sCols, int sOptions,
- typename dType, int dCols, int dOptions,
- typename DerivedW,
- typename DerivedG,
- typename DerivedJ>
- IGL_INLINE void igl::copyleft::boolean::minkowski_sum(
- const Eigen::PlainObjectBase<DerivedVA> & VA,
- const Eigen::PlainObjectBase<DerivedFA> & FA,
- const Eigen::Matrix<sType,1,sCols,sOptions> & s,
- const Eigen::Matrix<dType,1,dCols,dOptions> & d,
- Eigen::PlainObjectBase<DerivedW> & W,
- Eigen::PlainObjectBase<DerivedG> & G,
- Eigen::PlainObjectBase<DerivedJ> & J)
- {
- return minkowski_sum(VA,FA,s,d,true,W,G,J);
- }
|