123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326 |
- \documentclass[12pt]{diary}
- \title{Active set solver for quadratic programming}
- \author{Alec Jacobson}
- \date{18 September 2013}
- \renewcommand{\A}{\mat{A}}
- \renewcommand{\Q}{\mat{Q}}
- \newcommand{\RR}{\mat{R}}
- \newcommand{\Aeq}{\mat{A}_\textrm{eq}}
- \newcommand{\Aieq}{\mat{A}_\textrm{ieq}}
- \newcommand{\beq}{\vc{b}_\textrm{eq}}
- \newcommand{\bieq}{\vc{b}_\textrm{ieq}}
- \newcommand{\lx}{\Bell}
- \newcommand{\ux}{\vc{u}}
- \newcommand{\lameq} {\lambda_\textrm{eq}}
- \newcommand{\lamieq}{\lambda_\textrm{ieq}}
- \newcommand{\lamlu} {\lambda_\textrm{lu}}
- \begin{document}
- \begin{pullout}
- \footnotesize
- \emph{Disclaimer: This document rewrites and paraphrases the ideas in
- \url{http://www.math.uh.edu/~rohop/fall_06/Chapter3.pdf},
- \url{http://www.math.uh.edu/~rohop/fall_06/Chapter2.pdf}, and
- \url{http://www.cs.cornell.edu/courses/cs322/2007sp/notes/qr.pdf}. Mostly this
- is to put everything in the same place and use notation compatible with the
- libigl implementation. The ideas and descriptions, however, are not novel.}
- \end{pullout}
- Quadratic programming problems (QPs) can be written in general as:
- \begin{align}
- \argmin \limits_\z &
- \z^\transpose \A \z + \z^\transpose \b + \text{ constant}\\
- \text{subject to } & \Aieq \z ≤ \bieq,
- \end{align}
- where $\z \in \R^n$ is a vector of unknowns, $\A \in \R^{n \times n}$ is a (in
- our case sparse) matrix of quadratic coefficients, $\b \in \R^n$ is a vector of
- linear coefficients, $\Aieq \in \R^{m_\text{ieq} \times n}$ is a matrix (also
- sparse) linear inequality coefficients and $\bieq \in \R^{m_\text{ieq}}$ is a
- vector of corresponding right-hand sides. Each row in $\Aieq \z ≤ \bieq$
- corresponds to a single linear inequality constraint.
- Though representable by the linear inequality constraints above---linear
- \emph{equality} constraints, constant bounds, and constant fixed values appear
- so often that we can write a more practical form
- \begin{align}
- \argmin \limits_\z &
- \z^\transpose \A \z + \z^\transpose \b + \text{ constant}\\
- \text{subject to } & \z_\text{known} = \y,\\
- & \Aeq \z = \beq,\\
- & \Aieq \z ≤ \bieq,\\
- & \z ≥ \lx,\\
- & \z ≤ \ux,
- \end{align}
- where $\z_\text{known} \in \R^{n_\text{known}}$ is a subvector of our unknowns $\z$ which
- are known or fixed to obtain corresponding values $\y \in \R^{n_\text{known}}$,
- $\Aeq \in \R^{m_\text{eq} \times n}$ and $\beq \in \R^{m_\text{eq} \times n}$
- are linear \emph{equality} coefficients and right-hand sides respectively, and
- $\lx, \ux \in \R^n$ are vectors of constant lower and upper bound constraints.
- \todo{This notation is unfortunate. Too many bold A's and too many capitals.}
- This description exactly matches the prototype used by the
- \texttt{igl::active\_set()} function.
- The active set method works by iteratively treating a subset (some rows) of the
- inequality constraints as equality constraints. These are called the ``active
- set'' of constraints. So at any given iterations $i$ we might have a new
- problem:
- \begin{align}
- \argmin \limits_\z &
- \z^\transpose \A \z + \z^\transpose \b + \text{ constant}\\
- \text{subject to } & \z_\text{known}^i = \y^i,\\
- & \Aeq^i \z = \beq^i,
- \end{align}
- where the active rows from
- $\lx ≤ \z ≤ \ux$ and $\Aieq \z ≤ \bieq$ have been appended into
- $\z_\text{known}^i = \y^i$ and $\Aeq^i \z = \beq^i$ respectively.
- This may be optimized by solving a sparse linear system, resulting in the
- current solution $\z^i$. For equality constraint we can also find a
- corresponding Lagrange multiplier value. The active set method works by adding
- to the active set all linear inequality constraints which are violated by the
- previous solution $\z^{i-1}$ before this solve and then after the solve
- removing from the active set any constraints with negative Lagrange multiplier
- values. Let's declare that $\lameq \in \R^{m_\text{eq}}$, $\lamieq \in
- \R^{m_\text{ieq}}$, and $\lamlu \in \R^{n}$ are the Lagrange multipliers
- corresponding to the linear equality, linear inequality and constant bound
- constraints respectively. Then the abridged active set method proceeds as
- follows:
- \begin{lstlisting}[keywordstyle=,mathescape]
- while not converged
- add to active set all rows where $\Aieq \z > \bieq$, $\z < \lx$ or $\z > \ux$
- $\Aeq^i,\beq^i \leftarrow \Aeq,\beq + \text{active rows of} \Aieq,\bieq$
- $\z_\text{known}^i,\y^i \leftarrow \z_\text{known},\y + \text{active indices and values of} \lx,\ux$
- solve problem treating active constraints as equality constraints $\rightarrow \z,\lamieq,\lamlu$
- remove from active set all rows with $\lamieq < 0$ or $\lamlu < 0$
- end
- \end{lstlisting}
- The fixed values constraints of $\z_\text{known}^i = \y^i$ may be enforced by
- substituting $\z_\text{known}^i$ for $\y^i$ in the energy directly during the
- solve. Corresponding Lagrange multiplier values $\lambda_\text{known}^i$ can
- be recovered after we've found the rest of $\z$.
- The linear equality constraints $\Aeq^i \z = \beq^i$ are a little trickier. If
- the rows of
- $\Aeq^i \in \R^{(<m_\text{eq}+ m_\text{ieq}) \times n}$ are linearly
- independent then it is straightforward how to build a Lagrangian which enforces
- each constraint. This results in solving a system roughly of the form:
- \begin{equation}
- \left(
- \begin{array}{cc}
- \A & {\Aeq^i}^\transpose \\
- \Aeq^i & \mat{0}
- \end{array}
- \right)
- \left(
- \begin{array}{l}
- \z\\\lambda^i_\text{eq}
- \end{array}
- \right)
- =
- \left(
- \begin{array}{l}
- -\onehalf\b\\
- -\beq^i
- \end{array}
- \right)
- \end{equation}
- \todo{Double check. Could be missing a sign or factor of 2 here.}
- If the rows of $\Aeq^i$ are linearly dependent then the system matrix above
- will be singular. Because we may always assume that the constraints are not
- contradictory, this system can still be solved. But it will take some care.
- Some linear solvers, e.g.\ \textsc{MATLAB}'s, seem to deal with these OK.
- \textsc{Eigen}'s does not.
- Without loss of generality, let us assume that there are no inequality
- constraints and it's the rows of $\Aeq$ which might be linearly dependent.
- Let's also assume we have no fixed or known values. Then the linear system
- above corresponds to the following optimization problem:
- \begin{align}
- \argmin \limits_\z &
- \z^\transpose \A \z + \z^\transpose \b + \text{ constant}\\
- \text{subject to } & \Aeq \z = \beq.
- \end{align}
- For the sake of cleaner notation, let $m = m_\text{eq}$ so that $\Aeq \in \R^{m
- \times n}$ and $\beq \in \R^m$.
- We can construct the null space of the constraints by computing a QR
- decomposition of $\Aeq^\transpose$:
- \begin{equation}
- \Aeq^\transpose \P = \Q \RR =
- \left(\begin{array}{cc}
- \Q_1 & \Q_2
- \end{array}\right)
- \left(\begin{array}{c}
- \RR\\
- \mat{0}
- \end{array}\right)=
- \Q_1 \RR
- \end {equation}
- where $\P \in \R^{m \times m}$ is a sparse permutation matrix, $\Q \in \R^{n
- \times n}$ is orthonormal, $\RR \in \R^{n \times m}$ is upper triangular. Let
- $r$ be the row rank of $\Aeq$---the number of linearly independent rows---then
- we split $\Q$ and $\RR$ into $\Q_1 \in \R^{n \times r}$, $\Q_2 \in \R^{n \times
- n-r}$, and $\R_1 \in \RR^{r \times m}$.
- Notice that
- \begin{align}
- \Aeq \z &= \beq \\
- \P \P^\transpose \Aeq \z &= \\
- \P \left(\Aeq^\transpose \P\right)^\transpose \z &= \\
- \P\left(\Q\RR\right)^\transpose \z &= \\
- \P \RR^\transpose \Q^\transpose \z &= \\
- \P \RR^\transpose \Q \z &= \\
- \P \left(\RR_1^\transpose \mat{0}\right)
- \left(\begin{array}{c}
- \Q_1^\transpose\\
- \Q_2^\transpose
- \end{array}\right) \z &=\\
- \P \RR_1^\transpose \Q_1^\transpose \z + \P \0 \Q_2^\transpose \z &= .
- \end{align}
- Here we see that $\Q_1^\transpose \z$ affects this equality but
- $\Q_2^\transpose \z$ does not. Thus
- we say that $\Q_2$ forms a basis that spans the null space of $\Aeq$. That is,
- $\Aeq \Q_2 \w_2 =
- \vc{0},
- \forall \w_2 \in \R^{n-r}$. Let's write
- \begin{equation}
- \z = \Q_1 \w_1 + \Q_2 \w_2.
- \end{equation}
- We're only interested in solutions $\z$ which satisfy our equality constraints
- $\Aeq \z = \beq$. If we plug in the above then we get
- \begin{align}
- \P \Aeq \left(\Q_1 \w_1 + \Q_2 \w_2\right) &= \beq \\
- \P \Aeq \Q_1 \w_1 &= \beq \\
- \P \left(\RR^\transpose \quad
- \mat{0}\right)\left(\begin{array}{c}\Q_1^\transpose\\
- \Q_2^\transpose\end{array}\right) \Q_1 \w_1 &= \beq \\
- \P \RR^\transpose \Q_1^\transpose \Q_1 \w_1 &= \beq \\
- \P \RR^\transpose \w_1 &= \beq \\
- \w_1 &= {\RR^\transpose}^{-1} \P^\transpose \beq.
- \end{align}
- % P RT Q1T z = Beq
- % RT Q1T z = PT Beq
- % Q1T z = RT \ PT Beq
- % w1 = RT \ PT * Beq
- % z = Q2 w2 + Q1 * w1
- % z = Q2 w2 + Q1 * RT \ P * Beq
- % z = Q2 w2 + lambda0
- So then
- \begin{align}
- z &= \Q_1 {\RR^\transpose}^{-1} \P^\transpose \beq + \Q_2 \w_2 \\
- z &= \Q_2 \w_2 + \overline{\w}_1\\
- \end{align}
- where $\overline{\w}_1$ is just collecting the known terms that do not depend on the
- unknowns $\w_2$.
- Now, by construction, $\Q_2 \w_2 + \overline{\w}_1$ spans (all) possible solutions
- for $\z$ that satisfy $\Aeq \z = \beq$
- % Let:
- % z = Q2 w2 + Q1 * w1
- % z = Q2 w2 + Q1 * RT \ P * Beq
- % z = Q2 w2 + lambda0
- % Q2 w2 + lambda0 spans all z such that Aeq z = Beq, we have essentially
- % "factored out" the constraints. We can then simply make this substitution
- % into our original optimization problem, leaving an \emph{unconstrained}
- % quadratic energy optimization
- \begin{align}
- \argmin \limits_{\w_2} & (\Q_2 \w_2 + \overline{\w}_1)^\transpose \A (\Q_2 \w_2 + \overline{\w}_1) +
- (\Q_2 \w_2 + \overline{\w}_1)^\transpose \b + \textrm{ constant}\\
- &\text{\emph{or equivalently}} \notag\\
- \argmin \limits_{\w_2} &
- \w_2^\transpose \Q_2^\transpose \A \Q_2 + \w_2^\transpose \left(2\Q_2^\transpose \A
- \Q_2 \overline{\w}_1 + \Q_2^\transpose \b\right) + \textrm{ constant}
- \end{align}
- which is solved with a linear system solve
- \begin{equation}
- \left(\Q_2^\transpose \A \Q_2\right) \w_2 =
- -2\Q_2^\transpose \A \Q_2 \overline{\w}_1 + \Q_2^\transpose \b
- \end{equation}
- \todo{I've almost surely lost a sign or factor of 2 here.}
- If $\A$ is semi-positive definite then $\Q_2^\transpose\A\Q_2$ will also be
- semi-positive definite. Thus Cholesky factorization can be used. If $\A$ is
- sparse and $\Aeq$ is sparse and a good column pivoting sparse QR library is
- used then $\Q_2$ will be sparse and so will $\Q_2^\transpose\A\Q_2$.
- After $\w_2$ is known we can compute the solution $\z$ as
- \begin{equation}
- \z = \Q_2 \w_2 + \overline{\w}_1.
- \end{equation}
- Recovering the Lagrange multipliers $\lameq \in \R^{m}$ corresponding to $\Aeq
- \z = \b$ is a bit trickier. The equation is:
- \begin{align}
- \left(\A\quad \Aeq^\transpose\right)
- \left(\begin{array}{c}
- \z\\
- \lameq
- \end{array}\right) &= -\onehalf\b \\
- \Aeq^\transpose \lameq &= - \A \z - \onehalf\b \\
- \Q_1^\transpose \Aeq^\transpose \lameq &= - \Q_1^\transpose \A \z - \onehalf\Q_1^\transpose \b \\
- % AT P = Q_1 R
- % AT = Q_1 R PT
- %
- % Q1T AT
- % Q1T Q_1 R PT
- % R PT
- & \textrm{\emph{Recall that $\Aeq^\transpose\P = \Q_1\RR$ so then $
- \Q_1^\transpose \Aeq^\transpose = \RR \P^\transpose$}}\notag\\
- \RR \P^\transpose \lameq &= - \Q_1^\transpose \A \z - \onehalf\Q_1^\transpose \b \\
- \lameq &= \P
- \RR^{-1}
- \left(-\Q_1^\transpose \A \z - \onehalf\Q_1^\transpose \b\right).
- \end{align}
- \alec{If $r<m$ then I think it is enough to define the permutation matrix as
- rectangular $\P \in \R^{m \times r}$.}
- We assumes that there were now known or fixed values. If there are, special
- care only needs to be taken to adjust $\Aeq \z = \beq$ to account for
- substituting $\z_\text{known}$ with $\y$.
- \hr
- \clearpage
- The following table describes the translation between the entities described in
- this document and those used in \texttt{igl/active\_set} and
- \texttt{igl/min\_quad\_with\_fixed}.
- \begin{lstlisting}[keywordstyle=,mathescape]
- $\A$: A
- $\b$: B
- $\z$: Z
- $\Aeq$: Aeq
- $\Aieq$: Aieq
- $\beq$: Beq
- $\bieq$: Bieq
- $\lx$: lx
- $\ux$: ux
- $\lamieq$: ~Lambda_Aieq_i
- $\lamlu$: ~Lambda_known_i
- $\P$: AeqTE
- $\Q$: AeqTQ
- $\RR$: AeqTR1
- $\RR^\transpose$: AeqTR1T
- $\Q_1$: AeqTQ1
- $\Q_1^\transpose$: AeqTQ1T
- $\Q_2$: AeqTQ2
- $\Q_2^\transpose$: AeqTQ2T
- $\w_2$: lambda
- $\overline{\w}_1$: lambda_0
- \end{lstlisting}
- % Resources
- % http://www.cs.cornell.edu/courses/cs322/2007sp/notes/qr.pdf
- % http://www.math.uh.edu/~rohop/fall_06/Chapter2.pdf
- % http://www.math.uh.edu/~rohop/fall_06/Chapter3.pdf
- \end{document}
|