py_doc.cpp 64 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365
  1. const char *__doc_igl_active_set = R"igl_Qu8mg5v7(// Known Bugs: rows of [Aeq;Aieq] **must** be linearly independent. Should be
  2. // using QR decomposition otherwise:
  3. // http://www.okstate.edu/sas/v8/sashtml/ormp/chap5/sect32.htm
  4. //
  5. // ACTIVE_SET Minimize quadratic energy
  6. //
  7. // 0.5*Z'*A*Z + Z'*B + C with constraints
  8. //
  9. // that Z(known) = Y, optionally also subject to the constraints Aeq*Z = Beq,
  10. // and further optionally subject to the linear inequality constraints that
  11. // Aieq*Z <= Bieq and constant inequality constraints lx <= x <= ux
  12. //
  13. // Inputs:
  14. // A n by n matrix of quadratic coefficients
  15. // B n by 1 column of linear coefficients
  16. // known list of indices to known rows in Z
  17. // Y list of fixed values corresponding to known rows in Z
  18. // Aeq meq by n list of linear equality constraint coefficients
  19. // Beq meq by 1 list of linear equality constraint constant values
  20. // Aieq mieq by n list of linear inequality constraint coefficients
  21. // Bieq mieq by 1 list of linear inequality constraint constant values
  22. // lx n by 1 list of lower bounds [] implies -Inf
  23. // ux n by 1 list of upper bounds [] implies Inf
  24. // params struct of additional parameters (see below)
  25. // Z if not empty, is taken to be an n by 1 list of initial guess values
  26. // (see output)
  27. // Outputs:
  28. // Z n by 1 list of solution values
  29. // Returns true on success, false on error
  30. //
  31. // Benchmark: For a harmonic solve on a mesh with 325K facets, matlab 2.2
  32. // secs, igl/min_quad_with_fixed.h 7.1 secs
  33. //)igl_Qu8mg5v7";
  34. const char *__doc_igl_arap_precomputation = R"igl_Qu8mg5v7(// Compute necessary information to start using an ARAP deformation
  35. //
  36. // Inputs:
  37. // V #V by dim list of mesh positions
  38. // F #F by simplex-size list of triangle|tet indices into V
  39. // dim dimension being used at solve time. For deformation usually dim =
  40. // V.cols(), for surface parameterization V.cols() = 3 and dim = 2
  41. // b #b list of "boundary" fixed vertex indices into V
  42. // Outputs:
  43. // data struct containing necessary precomputation)igl_Qu8mg5v7";
  44. const char *__doc_igl_arap_solve = R"igl_Qu8mg5v7(// Inputs:
  45. // bc #b by dim list of boundary conditions
  46. // data struct containing necessary precomputation and parameters
  47. // U #V by dim initial guess)igl_Qu8mg5v7";
  48. const char *__doc_igl_avg_edge_length = R"igl_Qu8mg5v7(// Compute the average edge length for the given triangle mesh
  49. // Templates:
  50. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  51. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  52. // DerivedL derived from edge lengths matrix type: i.e. MatrixXd
  53. // Inputs:
  54. // V eigen matrix #V by 3
  55. // F #F by simplex-size list of mesh faces (must be simplex)
  56. // Outputs:
  57. // l average edge length
  58. //
  59. // See also: adjacency_matrix)igl_Qu8mg5v7";
  60. const char *__doc_igl_barycenter = R"igl_Qu8mg5v7(// Computes the barycenter of every simplex
  61. //
  62. // Inputs:
  63. // V #V x dim matrix of vertex coordinates
  64. // F #F x simplex_size matrix of indices of simplex corners into V
  65. // Output:
  66. // BC #F x dim matrix of 3d vertices
  67. //)igl_Qu8mg5v7";
  68. const char *__doc_igl_barycentric_coordinates = R"igl_Qu8mg5v7(// Compute barycentric coordinates in a tet
  69. //
  70. // Inputs:
  71. // P #P by 3 Query points in 3d
  72. // A #P by 3 Tet corners in 3d
  73. // B #P by 3 Tet corners in 3d
  74. // C #P by 3 Tet corners in 3d
  75. // D #P by 3 Tet corners in 3d
  76. // Outputs:
  77. // L #P by 4 list of barycentric coordinates
  78. // )igl_Qu8mg5v7";
  79. const char *__doc_igl_bbw_bbw = R"igl_Qu8mg5v7(// Compute Bounded Biharmonic Weights on a given domain (V,Ele) with a given
  80. // set of boundary conditions
  81. //
  82. // Templates
  83. // DerivedV derived type of eigen matrix for V (e.g. MatrixXd)
  84. // DerivedF derived type of eigen matrix for F (e.g. MatrixXi)
  85. // Derivedb derived type of eigen matrix for b (e.g. VectorXi)
  86. // Derivedbc derived type of eigen matrix for bc (e.g. MatrixXd)
  87. // DerivedW derived type of eigen matrix for W (e.g. MatrixXd)
  88. // Inputs:
  89. // V #V by dim vertex positions
  90. // Ele #Elements by simplex-size list of element indices
  91. // b #b boundary indices into V
  92. // bc #b by #W list of boundary values
  93. // data object containing options, intial guess --> solution and results
  94. // Outputs:
  95. // W #V by #W list of *unnormalized* weights to normalize use
  96. // igl::normalize_row_sums(W,W);
  97. // Returns true on success, false on failure)igl_Qu8mg5v7";
  98. const char *__doc_igl_boundary_conditions = R"igl_Qu8mg5v7(// Compute boundary conditions for automatic weights computation. This
  99. // function expects that the given mesh (V,Ele) has sufficient samples
  100. // (vertices) exactly at point handle locations and exactly along bone and
  101. // cage edges.
  102. //
  103. // Inputs:
  104. // V #V by dim list of domain vertices
  105. // Ele #Ele by simplex-size list of simplex indices
  106. // C #C by dim list of handle positions
  107. // P #P by 1 list of point handle indices into C
  108. // BE #BE by 2 list of bone edge indices into C
  109. // CE #CE by 2 list of cage edge indices into *P*
  110. // Outputs:
  111. // b #b list of boundary indices (indices into V of vertices which have
  112. // known, fixed values)
  113. // bc #b by #weights list of known/fixed values for boundary vertices
  114. // (notice the #b != #weights in general because #b will include all the
  115. // intermediary samples along each bone, etc.. The ordering of the
  116. // weights corresponds to [P;BE]
  117. // Returns true if boundary conditions make sense)igl_Qu8mg5v7";
  118. const char *__doc_igl_boundary_facets = R"igl_Qu8mg5v7(// BOUNDARY_FACETS Determine boundary faces (edges) of tetrahedra (triangles)
  119. // stored in T (analogous to qptoolbox's `outline` and `boundary_faces`).
  120. //
  121. // Templates:
  122. // IntegerT integer-value: e.g. int
  123. // IntegerF integer-value: e.g. int
  124. // Input:
  125. // T tetrahedron (triangle) index list, m by 4 (3), where m is the number of tetrahedra
  126. // Output:
  127. // F list of boundary faces, n by 3 (2), where n is the number of boundary faces
  128. //
  129. //)igl_Qu8mg5v7";
  130. const char *__doc_igl_boundary_loop = R"igl_Qu8mg5v7(// Compute list of ordered boundary loops for a manifold mesh.
  131. //
  132. // Templates:
  133. // Index index type
  134. // Inputs:
  135. // F #V by dim list of mesh faces
  136. // Outputs:
  137. // L list of loops where L[i] = ordered list of boundary vertices in loop i
  138. //)igl_Qu8mg5v7";
  139. const char *__doc_igl_cat = R"igl_Qu8mg5v7(// Perform concatenation of a two matrices along a single dimension
  140. // If dim == 1, then C = [A;B]. If dim == 2 then C = [A B]
  141. //
  142. // Template:
  143. // Scalar scalar data type for sparse matrices like double or int
  144. // Mat matrix type for all matrices (e.g. MatrixXd, SparseMatrix)
  145. // MatC matrix type for ouput matrix (e.g. MatrixXd) needs to support
  146. // resize
  147. // Inputs:
  148. // A first input matrix
  149. // B second input matrix
  150. // dim dimension along which to concatenate, 0 or 1
  151. // Outputs:
  152. // C output matrix
  153. // )igl_Qu8mg5v7";
  154. const char *__doc_igl_collapse_edge = R"igl_Qu8mg5v7(See collapse_edge for the documentation.)igl_Qu8mg5v7";
  155. const char *__doc_igl_colon = R"igl_Qu8mg5v7(// Colon operator like matlab's colon operator. Enumerats values between low
  156. // and hi with step step.
  157. // Templates:
  158. // L should be a eigen matrix primitive type like int or double
  159. // S should be a eigen matrix primitive type like int or double
  160. // H should be a eigen matrix primitive type like int or double
  161. // T should be a eigen matrix primitive type like int or double
  162. // Inputs:
  163. // low starting value if step is valid then this is *always* the first
  164. // element of I
  165. // step step difference between sequential elements returned in I,
  166. // remember this will be cast to template T at compile time. If low<hi
  167. // then step must be positive. If low>hi then step must be negative.
  168. // Otherwise I will be set to empty.
  169. // hi ending value, if (hi-low)%step is zero then this will be the last
  170. // element in I. If step is positive there will be no elements greater
  171. // than hi, vice versa if hi<low
  172. // Output:
  173. // I list of values from low to hi with step size step)igl_Qu8mg5v7";
  174. const char *__doc_igl_column_to_quats = R"igl_Qu8mg5v7(// "Columnize" a list of quaternions (q1x,q1y,q1z,q1w,q2x,q2y,q2z,q2w,...)
  175. //
  176. // Inputs:
  177. // Q n*4-long list of coefficients
  178. // Outputs:
  179. // vQ n-long list of quaternions
  180. // Returns false if n%4!=0)igl_Qu8mg5v7";
  181. const char *__doc_igl_comb_cross_field = R"igl_Qu8mg5v7(// Inputs:
  182. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  183. // F #F by 4 eigen Matrix of face (quad) indices
  184. // PD1in #F by 3 eigen Matrix of the first per face cross field vector
  185. // PD2in #F by 3 eigen Matrix of the second per face cross field vector
  186. // Output:
  187. // PD1out #F by 3 eigen Matrix of the first combed cross field vector
  188. // PD2out #F by 3 eigen Matrix of the second combed cross field vector
  189. //)igl_Qu8mg5v7";
  190. const char *__doc_igl_comb_frame_field = R"igl_Qu8mg5v7(// Inputs:
  191. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  192. // F #F by 4 eigen Matrix of face (quad) indices
  193. // PD1 #F by 3 eigen Matrix of the first per face cross field vector
  194. // PD2 #F by 3 eigen Matrix of the second per face cross field vector
  195. // BIS1_combed #F by 3 eigen Matrix of the first combed bisector field vector
  196. // BIS2_combed #F by 3 eigen Matrix of the second combed bisector field vector
  197. // Output:
  198. // PD1_combed #F by 3 eigen Matrix of the first combed cross field vector
  199. // PD2_combed #F by 3 eigen Matrix of the second combed cross field vector
  200. //)igl_Qu8mg5v7";
  201. const char *__doc_igl_compute_frame_field_bisectors = R"igl_Qu8mg5v7(// Compute bisectors of a frame field defined on mesh faces
  202. // Inputs:
  203. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  204. // F #F by 3 eigen Matrix of face (triangle) indices
  205. // B1 #F by 3 eigen Matrix of face (triangle) base vector 1
  206. // B2 #F by 3 eigen Matrix of face (triangle) base vector 2
  207. // PD1 #F by 3 eigen Matrix of the first per face frame field vector
  208. // PD2 #F by 3 eigen Matrix of the second per face frame field vector
  209. // Output:
  210. // BIS1 #F by 3 eigen Matrix of the first per face frame field bisector
  211. // BIS2 #F by 3 eigen Matrix of the second per face frame field bisector
  212. //)igl_Qu8mg5v7";
  213. const char *__doc_igl_copyleft_cgal_mesh_boolean = R"igl_Qu8mg5v7(// MESH_BOOLEAN Compute boolean csg operations on "solid", consistently
  214. // oriented meshes.
  215. //
  216. // Inputs:
  217. // VA #VA by 3 list of vertex positions of first mesh
  218. // FA #FA by 3 list of triangle indices into VA
  219. // VB #VB by 3 list of vertex positions of second mesh
  220. // FB #FB by 3 list of triangle indices into VB
  221. // type type of boolean operation
  222. // Outputs:
  223. // VC #VC by 3 list of vertex positions of boolean result mesh
  224. // FC #FC by 3 list of triangle indices into VC
  225. // J #FC list of indices into [FA;FA.rows()+FB] revealing "birth" facet
  226. // Returns true if inputs induce a piecewise constant winding number
  227. // field and type is valid
  228. //
  229. // See also: mesh_boolean_cork, intersect_other,
  230. // remesh_self_intersections)igl_Qu8mg5v7";
  231. const char *__doc_igl_copyleft_cgal_remesh_self_intersections = R"igl_Qu8mg5v7(// Given a triangle mesh (V,F) compute a new mesh (VV,FF) which is the same
  232. // as (V,F) except that any self-intersecting triangles in (V,F) have been
  233. // subdivided (new vertices and face created) so that the self-intersection
  234. // contour lies exactly on edges in (VV,FF). New vertices will appear in
  235. // original faces or on original edges. New vertices on edges are "merged"
  236. // only across original faces sharing that edge. This means that if the input
  237. // triangle mesh is a closed manifold the output will be too.
  238. //
  239. // Inputs:
  240. // V #V by 3 list of vertex positions
  241. // F #F by 3 list of triangle indices into V
  242. // params struct of optional parameters
  243. // Outputs:
  244. // VV #VV by 3 list of vertex positions
  245. // FF #FF by 3 list of triangle indices into VV
  246. // IF #intersecting face pairs by 2 list of intersecting face pairs,
  247. // indexing F
  248. // J #FF list of indices into F denoting birth triangle
  249. // IM #VV list of indices into VV of unique vertices.
  250. //
  251. // Known bugs: If an existing edge in (V,F) lies exactly on another face then
  252. // any resulting additional vertices along that edge may not get properly
  253. // connected so that the output mesh has the same global topology. This is
  254. // because
  255. //
  256. // Example:
  257. // // resolve intersections
  258. // igl::copyleft::cgal::remesh_self_intersections(V,F,params,VV,FF,IF,J,IM);
  259. // // _apply_ duplicate vertex mapping IM to FF
  260. // for_each(FF.data(),FF.data()+FF.size(),[&IM](int & a){a=IM(a);});
  261. // // remove any vertices now unreferenced after duplicate mapping.
  262. // igl::remove_unreferenced(VV,FF,SV,SF,UIM);
  263. // // Now (SV,SF) is ready to extract outer hull
  264. // igl::copyleft::cgal::outer_hull(SV,SF,G,J,flip);
  265. //)igl_Qu8mg5v7";
  266. const char *__doc_igl_copyleft_comiso_miq = R"igl_Qu8mg5v7(// Inputs:
  267. // V #V by 3 list of mesh vertex 3D positions
  268. // F #F by 3 list of faces indices in V
  269. // PD1 #V by 3 first line of the Jacobian per triangle
  270. // PD2 #V by 3 second line of the Jacobian per triangle
  271. // (optional, if empty it will be a vector in the tangent plane orthogonal to PD1)
  272. // scale global scaling for the gradient (controls the quads resolution)
  273. // stiffness weight for the stiffness iterations
  274. // direct_round greedily round all integer variables at once (greatly improves optimization speed but lowers quality)
  275. // iter stiffness iterations (0 = no stiffness)
  276. // local_iter number of local iterations for the integer rounding
  277. // do_round enables the integer rounding (disabling it could be useful for debugging)
  278. // round_vertices id of additional vertices that should be snapped to integer coordinates
  279. // hard_features #H by 2 list of pairs of vertices that belongs to edges that should be snapped to integer coordinates
  280. //
  281. // Output:
  282. // UV #UV by 2 list of vertices in 2D
  283. // FUV #FUV by 3 list of face indices in UV
  284. //
  285. // TODO: rename the parameters name in the cpp consistenly
  286. // improve the handling of hard_features, right now it might fail in difficult cases)igl_Qu8mg5v7";
  287. const char *__doc_igl_copyleft_comiso_nrosy = R"igl_Qu8mg5v7(// Generate a N-RoSy field from a sparse set of constraints
  288. //
  289. // Inputs:
  290. // V #V by 3 list of mesh vertex coordinates
  291. // F #F by 3 list of mesh faces (must be triangles)
  292. // b #B by 1 list of constrained face indices
  293. // bc #B by 3 list of representative vectors for the constrained
  294. // faces
  295. // b_soft #S by 1 b for soft constraints
  296. // w_soft #S by 1 weight for the soft constraints (0-1)
  297. // bc_soft #S by 3 bc for soft constraints
  298. // N the degree of the N-RoSy vector field
  299. // soft the strenght of the soft contraints w.r.t. smoothness
  300. // (0 -> smoothness only, 1->constraints only)
  301. // Outputs:
  302. // R #F by 3 the representative vectors of the interpolated field
  303. // S #V by 1 the singularity index for each vertex (0 = regular))igl_Qu8mg5v7";
  304. const char *__doc_igl_copyleft_marching_cubes = R"igl_Qu8mg5v7(// marching_cubes( values, points, x_res, y_res, z_res, vertices, faces )
  305. //
  306. // performs marching cubes reconstruction on the grid defined by values, and
  307. // points, and generates vertices and faces
  308. //
  309. // Input:
  310. // values #number_of_grid_points x 1 array -- the scalar values of an
  311. // implicit function defined on the grid points (<0 in the inside of the
  312. // surface, 0 on the border, >0 outside)
  313. // points #number_of_grid_points x 3 array -- 3-D positions of the grid
  314. // points, ordered in x,y,z order:
  315. // points[index] = the point at (x,y,z) where :
  316. // x = (index % (xres -1),
  317. // y = (index / (xres-1)) %(yres-1),
  318. // z = index / (xres -1) / (yres -1) ).
  319. // where x,y,z index x, y, z dimensions
  320. // i.e. index = x + y*xres + z*xres*yres
  321. // xres resolutions of the grid in x dimension
  322. // yres resolutions of the grid in y dimension
  323. // zres resolutions of the grid in z dimension
  324. // Output:
  325. // vertices #V by 3 list of mesh vertex positions
  326. // faces #F by 3 list of mesh triangle indices
  327. //)igl_Qu8mg5v7";
  328. const char *__doc_igl_copyleft_swept_volume = R"igl_Qu8mg5v7(// Compute the surface of the swept volume of a solid object with surface
  329. // (V,F) mesh under going rigid motion.
  330. //
  331. // Inputs:
  332. // V #V by 3 list of mesh positions in reference pose
  333. // F #F by 3 list of mesh indices into V
  334. // transform function handle so that transform(t) returns the rigid
  335. // transformation at time t∈[0,1]
  336. // steps number of time steps: steps=3 --> t∈{0,0.5,1}
  337. // grid_res number of grid cells on the longest side containing the
  338. // motion (isolevel+1 cells will also be added on each side as padding)
  339. // isolevel distance level to be contoured as swept volume
  340. // Outputs:
  341. // SV #SV by 3 list of mesh positions of the swept surface
  342. // SF #SF by 3 list of mesh faces into SV)igl_Qu8mg5v7";
  343. const char *__doc_igl_copyleft_tetgen_tetrahedralize = R"igl_Qu8mg5v7(// Mesh the interior of a surface mesh (V,F) using tetgen
  344. //
  345. // Inputs:
  346. // V #V by 3 vertex position list
  347. // F #F list of polygon face indices into V (0-indexed)
  348. // switches string of tetgen options (See tetgen documentation) e.g.
  349. // "pq1.414a0.01" tries to mesh the interior of a given surface with
  350. // quality and area constraints
  351. // "" will mesh the convex hull constrained to pass through V (ignores F)
  352. // Outputs:
  353. // TV #V by 3 vertex position list
  354. // TT #T by 4 list of tet face indices
  355. // TF #F by 3 list of triangle face indices
  356. // Returns status:
  357. // 0 success
  358. // 1 tetgen threw exception
  359. // 2 tetgen did not crash but could not create any tets (probably there are
  360. // holes, duplicate faces etc.)
  361. // -1 other error)igl_Qu8mg5v7";
  362. const char *__doc_igl_cotmatrix = R"igl_Qu8mg5v7(// Constructs the cotangent stiffness matrix (discrete laplacian) for a given
  363. // mesh (V,F).
  364. //
  365. // Templates:
  366. // DerivedV derived type of eigen matrix for V (e.g. derived from
  367. // MatrixXd)
  368. // DerivedF derived type of eigen matrix for F (e.g. derived from
  369. // MatrixXi)
  370. // Scalar scalar type for eigen sparse matrix (e.g. double)
  371. // Inputs:
  372. // V #V by dim list of mesh vertex positions
  373. // F #F by simplex_size list of mesh faces (must be triangles)
  374. // Outputs:
  375. // L #V by #V cotangent matrix, each row i corresponding to V(i,:)
  376. //
  377. // See also: adjacency_matrix
  378. //
  379. // Note: This Laplacian uses the convention that diagonal entries are
  380. // **minus** the sum of off-diagonal entries. The diagonal entries are
  381. // therefore in general negative and the matrix is **negative** semi-definite
  382. // (immediately, -L is **positive** semi-definite)
  383. //
  384. // Known bugs: off by 1e-16 on regular grid. I think its a problem of
  385. // arithmetic order in cotmatrix_entries.h: C(i,e) = (arithmetic)/dblA/4)igl_Qu8mg5v7";
  386. const char *__doc_igl_covariance_scatter_matrix = R"igl_Qu8mg5v7(// Construct the covariance scatter matrix for a given arap energy
  387. // Inputs:
  388. // V #V by Vdim list of initial domain positions
  389. // F #F by 3 list of triangle indices into V
  390. // energy ARAPEnergyType enum value defining which energy is being used.
  391. // See ARAPEnergyType.h for valid options and explanations.
  392. // Outputs:
  393. // CSM dim*#V/#F by dim*#V sparse matrix containing special laplacians along
  394. // the diagonal so that when multiplied by V gives covariance matrix
  395. // elements, can be used to speed up covariance matrix computation)igl_Qu8mg5v7";
  396. const char *__doc_igl_cross_field_missmatch = R"igl_Qu8mg5v7(// Inputs:
  397. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  398. // F #F by 3 eigen Matrix of face (quad) indices
  399. // PD1 #F by 3 eigen Matrix of the first per face cross field vector
  400. // PD2 #F by 3 eigen Matrix of the second per face cross field vector
  401. // isCombed boolean, specifying whether the field is combed (i.e. matching has been precomputed.
  402. // If not, the field is combed first.
  403. // Output:
  404. // Handle_MMatch #F by 3 eigen Matrix containing the integer missmatch of the cross field
  405. // across all face edges
  406. //)igl_Qu8mg5v7";
  407. const char *__doc_igl_cut_mesh_from_singularities = R"igl_Qu8mg5v7(// Given a mesh (V,F) and the integer mismatch of a cross field per edge
  408. // (MMatch), finds the cut_graph connecting the singularities (seams) and the
  409. // degree of the singularities singularity_index
  410. //
  411. // Input:
  412. // V #V by 3 list of mesh vertex positions
  413. // F #F by 3 list of faces
  414. // MMatch #F by 3 list of per corner integer mismatch
  415. // Outputs:
  416. // seams #F by 3 list of per corner booleans that denotes if an edge is a
  417. // seam or not
  418. //)igl_Qu8mg5v7";
  419. const char *__doc_igl_deform_skeleton = R"igl_Qu8mg5v7(// Deform a skeleton.
  420. //
  421. // Inputs:
  422. // C #C by 3 list of joint positions
  423. // BE #BE by 2 list of bone edge indices
  424. // vA #BE list of bone transformations
  425. // Outputs
  426. // CT #BE*2 by 3 list of deformed joint positions
  427. // BET #BE by 2 list of bone edge indices (maintains order)
  428. //)igl_Qu8mg5v7";
  429. const char *__doc_igl_directed_edge_orientations = R"igl_Qu8mg5v7(// Determine rotations that take each edge from the x-axis to its given rest
  430. // orientation.
  431. //
  432. // Inputs:
  433. // C #C by 3 list of edge vertex positions
  434. // E #E by 2 list of directed edges
  435. // Outputs:
  436. // Q #E list of quaternions
  437. //)igl_Qu8mg5v7";
  438. const char *__doc_igl_directed_edge_parents = R"igl_Qu8mg5v7(// Recover "parents" (preceeding edges) in a tree given just directed edges.
  439. //
  440. // Inputs:
  441. // E #E by 2 list of directed edges
  442. // Outputs:
  443. // P #E list of parent indices into E (-1) means root
  444. //)igl_Qu8mg5v7";
  445. const char *__doc_igl_doublearea = R"igl_Qu8mg5v7(// DOUBLEAREA computes twice the area for each input triangle[quad]
  446. //
  447. // Templates:
  448. // DerivedV derived type of eigen matrix for V (e.g. derived from
  449. // MatrixXd)
  450. // DerivedF derived type of eigen matrix for F (e.g. derived from
  451. // MatrixXi)
  452. // DeriveddblA derived type of eigen matrix for dblA (e.g. derived from
  453. // MatrixXd)
  454. // Inputs:
  455. // V #V by dim list of mesh vertex positions
  456. // F #F by simplex_size list of mesh faces (must be triangles or quads)
  457. // Outputs:
  458. // dblA #F list of triangle[quad] double areas (SIGNED only for 2D input)
  459. //
  460. // Known bug: For dim==3 complexity is O(#V + #F)!! Not just O(#F). This is a big deal
  461. // if you have 1million unreferenced vertices and 1 face)igl_Qu8mg5v7";
  462. const char *__doc_igl_doublearea_single = R"igl_Qu8mg5v7(// Single triangle in 2D!
  463. //
  464. // This should handle streams of corners not just single corners)igl_Qu8mg5v7";
  465. const char *__doc_igl_doublearea_quad = R"igl_Qu8mg5v7(// DOUBLEAREA_QUAD computes twice the area for each input quadrilateral
  466. //
  467. // Inputs:
  468. // V #V by dim list of mesh vertex positions
  469. // F #F by simplex_size list of mesh faces (must be quadrilaterals)
  470. // Outputs:
  471. // dblA #F list of quadrilateral double areas
  472. //)igl_Qu8mg5v7";
  473. const char *__doc_igl_dqs = R"igl_Qu8mg5v7(// Dual quaternion skinning
  474. //
  475. // Inputs:
  476. // V #V by 3 list of rest positions
  477. // W #W by #C list of weights
  478. // vQ #C list of rotation quaternions
  479. // vT #C list of translation vectors
  480. // Outputs:
  481. // U #V by 3 list of new positions)igl_Qu8mg5v7";
  482. const char *__doc_igl_edge_lengths = R"igl_Qu8mg5v7(// Constructs a list of lengths of edges opposite each index in a face
  483. // (triangle/tet) list
  484. //
  485. // Templates:
  486. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  487. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  488. // DerivedL derived from edge lengths matrix type: i.e. MatrixXd
  489. // Inputs:
  490. // V eigen matrix #V by 3
  491. // F #F by 2 list of mesh edges
  492. // or
  493. // F #F by 3 list of mesh faces (must be triangles)
  494. // or
  495. // T #T by 4 list of mesh elements (must be tets)
  496. // Outputs:
  497. // L #F by {1|3|6} list of edge lengths
  498. // for edges, column of lengths
  499. // for triangles, columns correspond to edges [1,2],[2,0],[0,1]
  500. // for tets, columns correspond to edges
  501. // [3 0],[3 1],[3 2],[1 2],[2 0],[0 1]
  502. //)igl_Qu8mg5v7";
  503. const char *__doc_igl_edge_topology = R"igl_Qu8mg5v7(// Initialize Edges and their topological relations
  504. //
  505. // Output:
  506. // EV : #Ex2, Stores the edge description as pair of indices to vertices
  507. // FE : #Fx3, Stores the Triangle-Edge relation
  508. // EF : #Ex2: Stores the Edge-Triangle relation
  509. //
  510. // TODO: This seems to be a duplicate of edge_flaps.h)igl_Qu8mg5v7";
  511. const char *__doc_igl_eigs = R"igl_Qu8mg5v7(See eigs for the documentation.)igl_Qu8mg5v7";
  512. const char *__doc_igl_embree_ambient_occlusion = R"igl_Qu8mg5v7(// Compute ambient occlusion per given point
  513. //
  514. // Inputs:
  515. // ei EmbreeIntersector containing (V,F)
  516. // P #P by 3 list of origin points
  517. // N #P by 3 list of origin normals
  518. // Outputs:
  519. // S #P list of ambient occlusion values between 1 (fully occluded) and
  520. // 0 (not occluded)
  521. //)igl_Qu8mg5v7";
  522. const char *__doc_igl_embree_reorient_facets_raycast = R"igl_Qu8mg5v7(// Orient each component (identified by C) of a mesh (V,F) using ambient
  523. // occlusion such that the front side is less occluded than back side, as
  524. // described in "A Simple Method for Correcting Facet Orientations in
  525. // Polygon Meshes Based on Ray Casting" [Takayama et al. 2014].
  526. //
  527. // Inputs:
  528. // V #V by 3 list of vertex positions
  529. // F #F by 3 list of triangle indices
  530. // rays_total Total number of rays that will be shot
  531. // rays_minimum Minimum number of rays that each patch should receive
  532. // facet_wise Decision made for each face independently, no use of patches
  533. // (i.e., each face is treated as a patch)
  534. // use_parity Use parity mode
  535. // is_verbose Verbose output to cout
  536. // Outputs:
  537. // I #F list of whether face has been flipped
  538. // C #F list of patch ID (output of bfs_orient > manifold patches))igl_Qu8mg5v7";
  539. const char *__doc_igl_find_cross_field_singularities = R"igl_Qu8mg5v7(// Inputs:
  540. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  541. // F #F by 3 eigen Matrix of face (quad) indices
  542. // Handle_MMatch #F by 3 eigen Matrix containing the integer missmatch of the cross field
  543. // across all face edges
  544. // Output:
  545. // isSingularity #V by 1 boolean eigen Vector indicating the presence of a singularity on a vertex
  546. // singularityIndex #V by 1 integer eigen Vector containing the singularity indices
  547. //)igl_Qu8mg5v7";
  548. const char *__doc_igl_fit_rotations = R"igl_Qu8mg5v7(// Known issues: This seems to be implemented in Eigen/Geometry:
  549. // Eigen::umeyama
  550. //
  551. // FIT_ROTATIONS Given an input mesh and new positions find rotations for
  552. // every covariance matrix in a stack of covariance matrices
  553. //
  554. // Inputs:
  555. // S nr*dim by dim stack of covariance matrices
  556. // single_precision whether to use single precision (faster)
  557. // Outputs:
  558. // R dim by dim * nr list of rotations
  559. //)igl_Qu8mg5v7";
  560. const char *__doc_igl_fit_rotations_planar = R"igl_Qu8mg5v7(// FIT_ROTATIONS Given an input mesh and new positions find 2D rotations for
  561. // every vertex that best maps its one ring to the new one ring
  562. //
  563. // Inputs:
  564. // S nr*dim by dim stack of covariance matrices, third column and every
  565. // third row will be ignored
  566. // Outputs:
  567. // R dim by dim * nr list of rotations, third row and third column of each
  568. // rotation will just be identity
  569. //)igl_Qu8mg5v7";
  570. const char *__doc_igl_fit_rotations_SSE = R"igl_Qu8mg5v7(See fit_rotations_SSE for the documentation.)igl_Qu8mg5v7";
  571. const char *__doc_igl_floor = R"igl_Qu8mg5v7(// Floor a given matrix to nearest integers
  572. //
  573. // Inputs:
  574. // X m by n matrix of scalars
  575. // Outputs:
  576. // Y m by n matrix of floored integers)igl_Qu8mg5v7";
  577. const char *__doc_igl_forward_kinematics = R"igl_Qu8mg5v7(// Given a skeleton and a set of relative bone rotations compute absolute
  578. // rigid transformations for each bone.
  579. //
  580. // Inputs:
  581. // C #C by dim list of joint positions
  582. // BE #BE by 2 list of bone edge indices
  583. // P #BE list of parent indices into BE
  584. // dQ #BE list of relative rotations
  585. // dT #BE list of relative translations
  586. // Outputs:
  587. // vQ #BE list of absolute rotations
  588. // vT #BE list of absolute translations)igl_Qu8mg5v7";
  589. const char *__doc_igl_gaussian_curvature = R"igl_Qu8mg5v7(// Compute discrete local integral gaussian curvature (angle deficit, without
  590. // averaging by local area).
  591. //
  592. // Inputs:
  593. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  594. // F #F by 3 eigen Matrix of face (triangle) indices
  595. // Output:
  596. // K #V by 1 eigen Matrix of discrete gaussian curvature values
  597. //)igl_Qu8mg5v7";
  598. const char *__doc_igl_get_seconds = R"igl_Qu8mg5v7(// Return the current time in seconds since program start
  599. //
  600. // Example:
  601. // const auto & tictoc = []()
  602. // {
  603. // static double t_start = igl::get_seconds();
  604. // double diff = igl::get_seconds()-t_start;
  605. // t_start += diff;
  606. // return diff;
  607. // };
  608. // tictoc();
  609. // ... // part 1
  610. // cout<<"part 1: "<<tictoc()<<endl;
  611. // ... // part 2
  612. // cout<<"part 2: "<<tictoc()<<endl;
  613. // ... // etc)igl_Qu8mg5v7";
  614. const char *__doc_igl_grad = R"igl_Qu8mg5v7(// Gradient of a scalar function defined on piecewise linear elements (mesh)
  615. // is constant on each triangle i,j,k:
  616. // grad(Xijk) = (Xj-Xi) * (Vi - Vk)^R90 / 2A + (Xk-Xi) * (Vj - Vi)^R90 / 2A
  617. // where Xi is the scalar value at vertex i, Vi is the 3D position of vertex
  618. // i, and A is the area of triangle (i,j,k). ^R90 represent a rotation of
  619. // 90 degrees
  620. //)igl_Qu8mg5v7";
  621. const char *__doc_igl_harmonic = R"igl_Qu8mg5v7(// Compute k-harmonic weight functions "coordinates".
  622. //
  623. //
  624. // Inputs:
  625. // V #V by dim vertex positions
  626. // F #F by simplex-size list of element indices
  627. // b #b boundary indices into V
  628. // bc #b by #W list of boundary values
  629. // k power of harmonic operation (1: harmonic, 2: biharmonic, etc)
  630. // Outputs:
  631. // W #V by #W list of weights
  632. //)igl_Qu8mg5v7";
  633. const char *__doc_igl_hsv_to_rgb = R"igl_Qu8mg5v7(// Convert RGB to HSV
  634. //
  635. // Inputs:
  636. // h hue value (degrees: [0,360])
  637. // s saturation value ([0,1])
  638. // v value value ([0,1])
  639. // Outputs:
  640. // r red value ([0,1])
  641. // g green value ([0,1])
  642. // b blue value ([0,1]))igl_Qu8mg5v7";
  643. const char *__doc_igl_internal_angles = R"igl_Qu8mg5v7(// Compute internal angles for a triangle mesh
  644. //
  645. // Inputs:
  646. // V #V by dim eigen Matrix of mesh vertex nD positions
  647. // F #F by poly-size eigen Matrix of face (triangle) indices
  648. // Output:
  649. // K #F by poly-size eigen Matrix of internal angles
  650. // for triangles, columns correspond to edges [1,2],[2,0],[0,1]
  651. //
  652. // Known Issues:
  653. // if poly-size ≠ 3 then dim must equal 3.)igl_Qu8mg5v7";
  654. const char *__doc_igl_invert_diag = R"igl_Qu8mg5v7(// Templates:
  655. // T should be a eigen sparse matrix primitive type like int or double
  656. // Inputs:
  657. // X an m by n sparse matrix
  658. // Outputs:
  659. // Y an m by n sparse matrix)igl_Qu8mg5v7";
  660. const char *__doc_igl_is_irregular_vertex = R"igl_Qu8mg5v7(// Determine if a vertex is irregular, i.e. it has more than 6 (triangles)
  661. // or 4 (quads) incident edges. Vertices on the boundary are ignored.
  662. //
  663. // Inputs:
  664. // V #V by dim list of vertex positions
  665. // F #F by 3[4] list of triangle[quads] indices
  666. // Returns #V vector of bools revealing whether vertices are singular
  667. //)igl_Qu8mg5v7";
  668. const char *__doc_igl_jet = R"igl_Qu8mg5v7(// JET like MATLAB's jet
  669. //
  670. // Inputs:
  671. // m number of colors
  672. // Outputs:
  673. // J m by list of RGB colors between 0 and 1
  674. //
  675. //#ifndef IGL_NO_EIGEN
  676. // void jet(const int m, Eigen::MatrixXd & J);
  677. //#endif
  678. // Wrapper for directly computing [r,g,b] values for a given factor f between
  679. // 0 and 1
  680. //
  681. // Inputs:
  682. // f factor determining color value as if 0 was min and 1 was max
  683. // Outputs:
  684. // r red value
  685. // g green value
  686. // b blue value)igl_Qu8mg5v7";
  687. const char *__doc_igl_lbs_matrix = R"igl_Qu8mg5v7(// LBS_MATRIX Linear blend skinning can be expressed by V' = M * T where V' is
  688. // a #V by dim matrix of deformed vertex positions (one vertex per row), M is a
  689. // #V by (dim+1)*#T (composed of weights and rest positions) and T is a
  690. // #T*(dim+1) by dim matrix of #T stacked transposed transformation matrices.
  691. // See equations (1) and (2) in "Fast Automatic Skinning Transformations"
  692. // [Jacobson et al 2012]
  693. //
  694. // Inputs:
  695. // V #V by dim list of rest positions
  696. // W #V+ by #T list of weights
  697. // Outputs:
  698. // M #V by #T*(dim+1)
  699. //
  700. // In MATLAB:
  701. // kron(ones(1,size(W,2)),[V ones(size(V,1),1)]).*kron(W,ones(1,size(V,2)+1)))igl_Qu8mg5v7";
  702. const char *__doc_igl_lbs_matrix_column = R"igl_Qu8mg5v7(// LBS_MATRIX construct a matrix that when multiplied against a column of
  703. // affine transformation entries computes new coordinates of the vertices
  704. //
  705. // I'm not sure it makes since that the result is stored as a sparse matrix.
  706. // The number of non-zeros per row *is* dependent on the number of mesh
  707. // vertices and handles.
  708. //
  709. // Inputs:
  710. // V #V by dim list of vertex rest positions
  711. // W #V by #handles list of correspondence weights
  712. // Output:
  713. // M #V * dim by #handles * dim * (dim+1) matrix such that
  714. // new_V(:) = LBS(V,W,A) = reshape(M * A,size(V)), where A is a column
  715. // vectors formed by the entries in each handle's dim by dim+1
  716. // transformation matrix. Specifcally, A =
  717. // reshape(permute(Astack,[3 1 2]),n*dim*(dim+1),1)
  718. // or A = [Lxx;Lyx;Lxy;Lyy;tx;ty], and likewise for other dim
  719. // if Astack(:,:,i) is the dim by (dim+1) transformation at handle i)igl_Qu8mg5v7";
  720. const char *__doc_igl_local_basis = R"igl_Qu8mg5v7(// Compute a local orthogonal reference system for each triangle in the given mesh
  721. // Templates:
  722. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  723. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  724. // Inputs:
  725. // V eigen matrix #V by 3
  726. // F #F by 3 list of mesh faces (must be triangles)
  727. // Outputs:
  728. // B1 eigen matrix #F by 3, each vector is tangent to the triangle
  729. // B2 eigen matrix #F by 3, each vector is tangent to the triangle and perpendicular to B1
  730. // B3 eigen matrix #F by 3, normal of the triangle
  731. //
  732. // See also: adjacency_matrix)igl_Qu8mg5v7";
  733. const char *__doc_igl_lscm = R"igl_Qu8mg5v7(// Compute a Least-squares conformal map parametrization (equivalently
  734. // derived in "Intrinsic Parameterizations of Surface Meshes" [Desbrun et al.
  735. // 2002] and "Least Squares Conformal Maps for Automatic Texture Atlas
  736. // Generation" [Lévy et al. 2002]), though this implementation follows the
  737. // derivation in: "Spectral Conformal Parameterization" [Mullen et al. 2008]
  738. // (note, this does **not** implement the Eigen-decomposition based method in
  739. // [Mullen et al. 2008], which is not equivalent). Input should be a manifold
  740. // mesh (also no unreferenced vertices) and "boundary" (fixed vertices) `b`
  741. // should contain at least two vertices per connected component.
  742. //
  743. // Inputs:
  744. // V #V by 3 list of mesh vertex positions
  745. // F #F by 3 list of mesh faces (must be triangles)
  746. // b #b boundary indices into V
  747. // bc #b by 3 list of boundary values
  748. // Outputs:
  749. // UV #V by 2 list of 2D mesh vertex positions in UV space
  750. // Returns true only on solver success.
  751. //)igl_Qu8mg5v7";
  752. const char *__doc_igl_map_vertices_to_circle = R"igl_Qu8mg5v7(// Map the vertices whose indices are in a given boundary loop (bnd) on the
  753. // unit circle with spacing proportional to the original boundary edge
  754. // lengths.
  755. //
  756. // Inputs:
  757. // V #V by dim list of mesh vertex positions
  758. // b #W list of vertex ids
  759. // Outputs:
  760. // UV #W by 2 list of 2D position on the unit circle for the vertices in b)igl_Qu8mg5v7";
  761. const char *__doc_igl_massmatrix = R"igl_Qu8mg5v7(// Constructs the mass (area) matrix for a given mesh (V,F).
  762. //
  763. // Templates:
  764. // DerivedV derived type of eigen matrix for V (e.g. derived from
  765. // MatrixXd)
  766. // DerivedF derived type of eigen matrix for F (e.g. derived from
  767. // MatrixXi)
  768. // Scalar scalar type for eigen sparse matrix (e.g. double)
  769. // Inputs:
  770. // V #V by dim list of mesh vertex positions
  771. // F #F by simplex_size list of mesh faces (must be triangles)
  772. // type one of the following ints:
  773. // MASSMATRIX_TYPE_BARYCENTRIC barycentric
  774. // MASSMATRIX_TYPE_VORONOI voronoi-hybrid {default}
  775. // MASSMATRIX_TYPE_FULL full {not implemented}
  776. // Outputs:
  777. // M #V by #V mass matrix
  778. //
  779. // See also: adjacency_matrix
  780. //)igl_Qu8mg5v7";
  781. const char *__doc_igl_min_quad_with_fixed_precompute = R"igl_Qu8mg5v7(// Known Bugs: rows of Aeq **should probably** be linearly independent.
  782. // During precomputation, the rows of a Aeq are checked via QR. But in case
  783. // they're not then resulting probably will no longer be sparse: it will be
  784. // slow.
  785. //
  786. // MIN_QUAD_WITH_FIXED Minimize quadratic energy
  787. //
  788. // 0.5*Z'*A*Z + Z'*B + C with
  789. //
  790. // constraints that Z(known) = Y, optionally also subject to the constraints
  791. // Aeq*Z = Beq
  792. //
  793. // Templates:
  794. // T should be a eigen matrix primitive type like int or double
  795. // Inputs:
  796. // A n by n matrix of quadratic coefficients
  797. // known list of indices to known rows in Z
  798. // Y list of fixed values corresponding to known rows in Z
  799. // Aeq m by n list of linear equality constraint coefficients
  800. // pd flag specifying whether A(unknown,unknown) is positive definite
  801. // Outputs:
  802. // data factorization struct with all necessary information to solve
  803. // using min_quad_with_fixed_solve
  804. // Returns true on success, false on error
  805. //
  806. // Benchmark: For a harmonic solve on a mesh with 325K facets, matlab 2.2
  807. // secs, igl/min_quad_with_fixed.h 7.1 secs
  808. //)igl_Qu8mg5v7";
  809. const char *__doc_igl_min_quad_with_fixed_solve = R"igl_Qu8mg5v7(// Solves a system previously factored using min_quad_with_fixed_precompute
  810. //
  811. // Template:
  812. // T type of sparse matrix (e.g. double)
  813. // DerivedY type of Y (e.g. derived from VectorXd or MatrixXd)
  814. // DerivedZ type of Z (e.g. derived from VectorXd or MatrixXd)
  815. // Inputs:
  816. // data factorization struct with all necessary precomputation to solve
  817. // B n by 1 column of linear coefficients
  818. // Y b by 1 list of constant fixed values
  819. // Beq m by 1 list of linear equality constraint constant values
  820. // Outputs:
  821. // Z n by cols solution
  822. // sol #unknowns+#lagrange by cols solution to linear system
  823. // Returns true on success, false on error)igl_Qu8mg5v7";
  824. const char *__doc_igl_min_quad_with_fixed = R"igl_Qu8mg5v7(See min_quad_with_fixed for the documentation.)igl_Qu8mg5v7";
  825. const char *__doc_igl_n_polyvector = R"igl_Qu8mg5v7(// Inputs:
  826. // v0, v1 the two #3 by 1 vectors
  827. // normalized boolean, if false, then the vectors are normalized prior to the calculation
  828. // Output:
  829. // 3 by 3 rotation matrix that takes v0 to v1
  830. //)igl_Qu8mg5v7";
  831. const char *__doc_igl_normalize_row_lengths = R"igl_Qu8mg5v7(// Obsolete: just use A.rowwise().normalize() or B=A.rowwise().normalized();
  832. //
  833. // Normalize the rows in A so that their lengths are each 1 and place the new
  834. // entries in B
  835. // Inputs:
  836. // A #rows by k input matrix
  837. // Outputs:
  838. // B #rows by k input matrix, can be the same as A)igl_Qu8mg5v7";
  839. const char *__doc_igl_normalize_row_sums = R"igl_Qu8mg5v7(// Normalize the rows in A so that their sums are each 1 and place the new
  840. // entries in B
  841. // Inputs:
  842. // A #rows by k input matrix
  843. // Outputs:
  844. // B #rows by k input matrix, can be the same as A
  845. //
  846. // Note: This is just calling an Eigen one-liner.)igl_Qu8mg5v7";
  847. const char *__doc_igl_parula = R"igl_Qu8mg5v7(// PARULA like MATLAB's parula
  848. //
  849. // Inputs:
  850. // m number of colors
  851. // Outputs:
  852. // J m by list of RGB colors between 0 and 1
  853. //
  854. // Wrapper for directly computing [r,g,b] values for a given factor f between
  855. // 0 and 1
  856. //
  857. // Inputs:
  858. // f factor determining color value as if 0 was min and 1 was max
  859. // Outputs:
  860. // r red value
  861. // g green value
  862. // b blue value)igl_Qu8mg5v7";
  863. const char *__doc_igl_per_corner_normals = R"igl_Qu8mg5v7(// Compute vertex normals via vertex position list, face list
  864. // Inputs:
  865. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  866. // F #F by 3 eigne Matrix of face (triangle) indices
  867. // corner_threshold threshold in degrees on sharp angles
  868. // Output:
  869. // CN #F*3 by 3 eigen Matrix of mesh vertex 3D normals, where the normal
  870. // for corner F(i,j) is at CN(i*3+j,:) )igl_Qu8mg5v7";
  871. const char *__doc_igl_per_edge_normals = R"igl_Qu8mg5v7(// Compute face normals via vertex position list, face list
  872. // Inputs:
  873. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  874. // F #F by 3 eigen Matrix of face (triangle) indices
  875. // weight weighting type
  876. // FN #F by 3 matrix of 3D face normals per face
  877. // Output:
  878. // N #2 by 3 matrix of mesh edge 3D normals per row
  879. // E #E by 2 matrix of edge indices per row
  880. // EMAP #E by 1 matrix of indices from all edges to E
  881. //)igl_Qu8mg5v7";
  882. const char *__doc_igl_per_face_normals = R"igl_Qu8mg5v7(// Compute face normals via vertex position list, face list
  883. // Inputs:
  884. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  885. // F #F by 3 eigen Matrix of face (triangle) indices
  886. // Z 3 vector normal given to faces with degenerate normal.
  887. // Output:
  888. // N #F by 3 eigen Matrix of mesh face (triangle) 3D normals
  889. //
  890. // Example:
  891. // // Give degenerate faces (1/3,1/3,1/3)^0.5
  892. // per_face_normals(V,F,Vector3d(1,1,1).normalized(),N);)igl_Qu8mg5v7";
  893. const char *__doc_igl_per_face_normals_stable = R"igl_Qu8mg5v7(// Special version where order of face indices is guaranteed not to effect
  894. // output.)igl_Qu8mg5v7";
  895. const char *__doc_igl_per_vertex_normals = R"igl_Qu8mg5v7(// Compute vertex normals via vertex position list, face list
  896. // Inputs:
  897. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  898. // F #F by 3 eigne Matrix of face (triangle) indices
  899. // weighting Weighting type
  900. // Output:
  901. // N #V by 3 eigen Matrix of mesh vertex 3D normals)igl_Qu8mg5v7";
  902. const char *__doc_igl_planarize_quad_mesh = R"igl_Qu8mg5v7(// Inputs:
  903. // Vin #V by 3 eigen Matrix of mesh vertex 3D positions
  904. // F #F by 4 eigen Matrix of face (quad) indices
  905. // maxIter maximum numbers of iterations
  906. // threshold minimum allowed threshold for non-planarity
  907. // Output:
  908. // Vout #V by 3 eigen Matrix of planar mesh vertex 3D positions
  909. //)igl_Qu8mg5v7";
  910. const char *__doc_igl_png_readPNG = R"igl_Qu8mg5v7(// Read an image from a .png file into 4 memory buffers
  911. //
  912. // Input:
  913. // png_file path to .png file
  914. // Output:
  915. // R,G,B,A texture channels
  916. // Returns true on success, false on failure
  917. //)igl_Qu8mg5v7";
  918. const char *__doc_igl_png_writePNG = R"igl_Qu8mg5v7(// Writes an image to a png file
  919. //
  920. // Input:
  921. // R,G,B,A texture channels
  922. // Output:
  923. // png_file path to .png file
  924. // Returns true on success, false on failure
  925. //)igl_Qu8mg5v7";
  926. const char *__doc_igl_point_mesh_squared_distance = R"igl_Qu8mg5v7(// Compute distances from a set of points P to a triangle mesh (V,F)
  927. //
  928. // Inputs:
  929. // P #P by 3 list of query point positions
  930. // V #V by 3 list of vertex positions
  931. // Ele #Ele by (3|2|1) list of (triangle|edge|point) indices
  932. // Outputs:
  933. // sqrD #P list of smallest squared distances
  934. // I #P list of primitive indices corresponding to smallest distances
  935. // C #P by 3 list of closest points
  936. //
  937. // Known bugs: This only computes distances to given primitivess. So
  938. // unreferenced vertices are ignored. However, degenerate primitives are
  939. // handled correctly: triangle [1 2 2] is treated as a segment [1 2], and
  940. // triangle [1 1 1] is treated as a point. So one _could_ add extra
  941. // combinatorially degenerate rows to Ele for all unreferenced vertices to
  942. // also get distances to points.)igl_Qu8mg5v7";
  943. const char *__doc_igl_polar_svd = R"igl_Qu8mg5v7(// Computes the polar decomposition (R,T) of a matrix A using SVD singular
  944. // value decomposition
  945. //
  946. // Inputs:
  947. // A 3 by 3 matrix to be decomposed
  948. // Outputs:
  949. // R 3 by 3 rotation matrix part of decomposition (**always rotataion**)
  950. // T 3 by 3 stretch matrix part of decomposition
  951. // U 3 by 3 left-singular vectors
  952. // S 3 by 1 singular values
  953. // V 3 by 3 right-singular vectors
  954. //
  955. //)igl_Qu8mg5v7";
  956. const char *__doc_igl_principal_curvature = R"igl_Qu8mg5v7(// Compute the principal curvature directions and magnitude of the given triangle mesh
  957. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  958. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  959. // Inputs:
  960. // V eigen matrix #V by 3
  961. // F #F by 3 list of mesh faces (must be triangles)
  962. // radius controls the size of the neighbourhood used, 1 = average edge lenght
  963. //
  964. // Outputs:
  965. // PD1 #V by 3 maximal curvature direction for each vertex.
  966. // PD2 #V by 3 minimal curvature direction for each vertex.
  967. // PV1 #V by 1 maximal curvature value for each vertex.
  968. // PV2 #V by 1 minimal curvature value for each vertex.
  969. //
  970. // See also: average_onto_faces, average_onto_vertices
  971. //
  972. // This function has been developed by: Nikolas De Giorgis, Luigi Rocca and Enrico Puppo.
  973. // The algorithm is based on:
  974. // Efficient Multi-scale Curvature and Crease Estimation
  975. // Daniele Panozzo, Enrico Puppo, Luigi Rocca
  976. // GraVisMa, 2010)igl_Qu8mg5v7";
  977. const char *__doc_igl_quad_planarity = R"igl_Qu8mg5v7(// Compute planarity of the faces of a quad mesh
  978. // Inputs:
  979. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  980. // F #F by 4 eigen Matrix of face (quad) indices
  981. // Output:
  982. // P #F by 1 eigen Matrix of mesh face (quad) planarities
  983. //)igl_Qu8mg5v7";
  984. const char *__doc_igl_randperm = R"igl_Qu8mg5v7(// Like matlab's randperm(n) but minus 1
  985. //
  986. // Inputs:
  987. // n number of elements
  988. // Outputs:
  989. // I n list of rand permutation of 0:n-1)igl_Qu8mg5v7";
  990. const char *__doc_igl_readDMAT = R"igl_Qu8mg5v7(See readDMAT for the documentation.)igl_Qu8mg5v7";
  991. const char *__doc_igl_readMESH = R"igl_Qu8mg5v7(// load a tetrahedral volume mesh from a .mesh file
  992. //
  993. // Templates:
  994. // Scalar type for positions and vectors (will be read as double and cast
  995. // to Scalar)
  996. // Index type for indices (will be read as int and cast to Index)
  997. // Input:
  998. // mesh_file_name path of .mesh file
  999. // Outputs:
  1000. // V double matrix of vertex positions #V by 3
  1001. // T #T list of tet indices into vertex positions
  1002. // F #F list of face indices into vertex positions
  1003. //
  1004. // Known bugs: Holes and regions are not supported)igl_Qu8mg5v7";
  1005. const char *__doc_igl_readOBJ = R"igl_Qu8mg5v7(// Read a mesh from an ascii obj file, filling in vertex positions, normals
  1006. // and texture coordinates. Mesh may have faces of any number of degree
  1007. //
  1008. // Templates:
  1009. // Scalar type for positions and vectors (will be read as double and cast
  1010. // to Scalar)
  1011. // Index type for indices (will be read as int and cast to Index)
  1012. // Inputs:
  1013. // str path to .obj file
  1014. // Outputs:
  1015. // V double matrix of vertex positions #V by 3
  1016. // TC double matrix of texture coordinats #TC by 2
  1017. // N double matrix of corner normals #N by 3
  1018. // F #F list of face indices into vertex positions
  1019. // FTC #F list of face indices into vertex texture coordinates
  1020. // FN #F list of face indices into vertex normals
  1021. // Returns true on success, false on errors)igl_Qu8mg5v7";
  1022. const char *__doc_igl_readOFF = R"igl_Qu8mg5v7(// Read a mesh from an ascii obj file, filling in vertex positions, normals
  1023. // and texture coordinates. Mesh may have faces of any number of degree
  1024. //
  1025. // Templates:
  1026. // Scalar type for positions and vectors (will be read as double and cast
  1027. // to Scalar)
  1028. // Index type for indices (will be read as int and cast to Index)
  1029. // Inputs:
  1030. // str path to .obj file
  1031. // Outputs:
  1032. // V double matrix of vertex positions #V by 3
  1033. // F #F list of face indices into vertex positions
  1034. // TC double matrix of texture coordinats #TC by 2
  1035. // FTC #F list of face indices into vertex texture coordinates
  1036. // N double matrix of corner normals #N by 3
  1037. // FN #F list of face indices into vertex normals
  1038. // Returns true on success, false on errors)igl_Qu8mg5v7";
  1039. const char *__doc_igl_readTGF = R"igl_Qu8mg5v7(// READTGF
  1040. //
  1041. // [V,E,P,BE,CE,PE] = readTGF(filename)
  1042. //
  1043. // Read a graph from a .tgf file
  1044. //
  1045. // Input:
  1046. // filename .tgf file name
  1047. // Ouput:
  1048. // V # vertices by 3 list of vertex positions
  1049. // E # edges by 2 list of edge indices
  1050. // P # point-handles list of point handle indices
  1051. // BE # bone-edges by 2 list of bone-edge indices
  1052. // CE # cage-edges by 2 list of cage-edge indices
  1053. // PE # pseudo-edges by 2 list of pseudo-edge indices
  1054. //
  1055. // Assumes that graph vertices are 3 dimensional)igl_Qu8mg5v7";
  1056. const char *__doc_igl_read_triangle_mesh = R"igl_Qu8mg5v7(// read mesh from an ascii file with automatic detection of file format.
  1057. // supported: obj, off, stl, wrl, ply, mesh)
  1058. //
  1059. // Templates:
  1060. // Scalar type for positions and vectors (will be read as double and cast
  1061. // to Scalar)
  1062. // Index type for indices (will be read as int and cast to Index)
  1063. // Inputs:
  1064. // str path to file
  1065. // Outputs:
  1066. // V eigen double matrix #V by 3
  1067. // F eigen int matrix #F by 3
  1068. // Returns true iff success)igl_Qu8mg5v7";
  1069. const char *__doc_igl_remove_duplicate_vertices = R"igl_Qu8mg5v7(// REMOVE_DUPLICATE_VERTICES Remove duplicate vertices upto a uniqueness
  1070. // tolerance (epsilon)
  1071. //
  1072. // Inputs:
  1073. // V #V by dim list of vertex positions
  1074. // epsilon uniqueness tolerance (significant digit), can probably think of
  1075. // this as a tolerance on L1 distance
  1076. // Outputs:
  1077. // SV #SV by dim new list of vertex positions
  1078. // SVI #V by 1 list of indices so SV = V(SVI,:)
  1079. // SVJ #SV by 1 list of indices so V = SV(SVJ,:)
  1080. //
  1081. // Example:
  1082. // % Mesh in (V,F)
  1083. // [SV,SVI,SVJ] = remove_duplicate_vertices(V,1e-7);
  1084. // % remap faces
  1085. // SF = SVJ(F);
  1086. //)igl_Qu8mg5v7";
  1087. const char *__doc_igl_rotate_vectors = R"igl_Qu8mg5v7(// Rotate the vectors V by A radiants on the tangent plane spanned by B1 and
  1088. // B2
  1089. //
  1090. // Inputs:
  1091. // V #V by 3 eigen Matrix of vectors
  1092. // A #V eigen vector of rotation angles or a single angle to be applied
  1093. // to all vectors
  1094. // B1 #V by 3 eigen Matrix of base vector 1
  1095. // B2 #V by 3 eigen Matrix of base vector 2
  1096. //
  1097. // Output:
  1098. // Returns the rotated vectors
  1099. //)igl_Qu8mg5v7";
  1100. const char *__doc_igl_setdiff = R"igl_Qu8mg5v7(// Set difference of elements of matrices
  1101. //
  1102. // Inputs:
  1103. // A m-long vector of indices
  1104. // B n-long vector of indices
  1105. // Outputs:
  1106. // C (k<=m)-long vector of unique elements appearing in A but not in B
  1107. // IA (k<=m)-long list of indices into A so that C = A(IA)
  1108. //)igl_Qu8mg5v7";
  1109. const char *__doc_igl_signed_distance = R"igl_Qu8mg5v7(// Computes signed distance to a mesh
  1110. //
  1111. // Inputs:
  1112. // P #P by 3 list of query point positions
  1113. // V #V by 3 list of vertex positions
  1114. // F #F by ss list of triangle indices, ss should be 3 unless sign_type ==
  1115. // SIGNED_DISTANCE_TYPE_UNSIGNED
  1116. // sign_type method for computing distance _sign_ S
  1117. // Outputs:
  1118. // S #P list of smallest signed distances
  1119. // I #P list of facet indices corresponding to smallest distances
  1120. // C #P by 3 list of closest points
  1121. // N #P by 3 list of closest normals (only set if
  1122. // sign_type=SIGNED_DISTANCE_TYPE_PSEUDONORMAL)
  1123. //
  1124. // Known bugs: This only computes distances to triangles. So unreferenced
  1125. // vertices and degenerate triangles are ignored.)igl_Qu8mg5v7";
  1126. const char *__doc_igl_signed_distance_pseudonormal = R"igl_Qu8mg5v7(// Computes signed distance to mesh
  1127. //
  1128. // Inputs:
  1129. // tree AABB acceleration tree (see AABB.h)
  1130. // F #F by 3 list of triangle indices
  1131. // FN #F by 3 list of triangle normals
  1132. // VN #V by 3 list of vertex normals (ANGLE WEIGHTING)
  1133. // EN #E by 3 list of edge normals (UNIFORM WEIGHTING)
  1134. // EMAP #F*3 mapping edges in F to E
  1135. // q Query point
  1136. // Returns signed distance to mesh
  1137. //)igl_Qu8mg5v7";
  1138. const char *__doc_igl_signed_distance_winding_number = R"igl_Qu8mg5v7(// Inputs:
  1139. // tree AABB acceleration tree (see cgal/point_mesh_squared_distance.h)
  1140. // hier Winding number evaluation hierarchy
  1141. // q Query point
  1142. // Returns signed distance to mesh)igl_Qu8mg5v7";
  1143. const char *__doc_igl_slice = R"igl_Qu8mg5v7(// Act like the matlab X(row_indices,col_indices) operator, where
  1144. // row_indices, col_indices are non-negative integer indices.
  1145. //
  1146. // Inputs:
  1147. // X m by n matrix
  1148. // R list of row indices
  1149. // C list of column indices
  1150. // Output:
  1151. // Y #R by #C matrix
  1152. //
  1153. // See also: slice_mask)igl_Qu8mg5v7";
  1154. const char *__doc_igl_slice_into = R"igl_Qu8mg5v7(// Act like the matlab Y(row_indices,col_indices) = X
  1155. //
  1156. // Inputs:
  1157. // X xm by xn rhs matrix
  1158. // R list of row indices
  1159. // C list of column indices
  1160. // Y ym by yn lhs matrix
  1161. // Output:
  1162. // Y ym by yn lhs matrix, same as input but Y(R,C) = X)igl_Qu8mg5v7";
  1163. const char *__doc_igl_slice_mask = R"igl_Qu8mg5v7(// Act like the matlab X(row_mask,col_mask) operator, where
  1164. // row_mask, col_mask are non-negative integer indices.
  1165. //
  1166. // Inputs:
  1167. // X m by n matrix
  1168. // R m list of row bools
  1169. // C n list of column bools
  1170. // Output:
  1171. // Y #trues-in-R by #trues-in-C matrix
  1172. //
  1173. // See also: slice_mask)igl_Qu8mg5v7";
  1174. const char *__doc_igl_slice_tets = R"igl_Qu8mg5v7(// SLICE_TETS Slice through a tet mesh (V,T) along a given plane (via its
  1175. // implicit equation).
  1176. //
  1177. // Inputs:
  1178. // V #V by 3 list of tet mesh vertices
  1179. // T #T by 4 list of tet indices into V
  1180. // plane list of 4 coefficients in the plane equation: [x y z 1]'*plane = 0
  1181. // Optional:
  1182. // 'Manifold' followed by whether to stitch together triangles into a
  1183. // manifold mesh {true}: results in more compact U but slightly slower.
  1184. // Outputs:
  1185. // U #U by 3 list of triangle mesh vertices along slice
  1186. // G #G by 3 list of triangles indices into U
  1187. // J #G list of indices into T revealing from which tet each faces comes
  1188. // BC #U by #V list of barycentric coordinates (or more generally: linear
  1189. // interpolation coordinates) so that U = BC*V
  1190. // )igl_Qu8mg5v7";
  1191. const char *__doc_igl_sortrows = R"igl_Qu8mg5v7(// Act like matlab's [Y,I] = sortrows(X)
  1192. //
  1193. // Templates:
  1194. // DerivedX derived scalar type, e.g. MatrixXi or MatrixXd
  1195. // DerivedI derived integer type, e.g. MatrixXi
  1196. // Inputs:
  1197. // X m by n matrix whose entries are to be sorted
  1198. // ascending sort ascending (true, matlab default) or descending (false)
  1199. // Outputs:
  1200. // Y m by n matrix whose entries are sorted (**should not** be same
  1201. // reference as X)
  1202. // I m list of indices so that
  1203. // Y = X(I,:);)igl_Qu8mg5v7";
  1204. const char *__doc_igl_streamlines_init = R"igl_Qu8mg5v7(// Given a mesh and a field the function computes the /data/ necessary for tracing the field'
  1205. // streamlines, and creates the initial /state/ for the tracing.
  1206. // Inputs:
  1207. // V #V by 3 list of mesh vertex coordinates
  1208. // F #F by 3 list of mesh faces
  1209. // temp_field #F by 3n list of the 3D coordinates of the per-face vectors
  1210. // (n-degrees stacked horizontally for each triangle)
  1211. // treat_as_symmetric
  1212. // if true, adds n symmetry directions to the field (N = 2n). Else N = n
  1213. // percentage [0-1] percentage of faces sampled
  1214. // Outputs:
  1215. // data struct containing topology information of the mesh and field
  1216. // state struct containing the state of the tracing)igl_Qu8mg5v7";
  1217. const char *__doc_igl_streamlines_next = R"igl_Qu8mg5v7(// The function computes the next state for each point in the sample
  1218. // V #V by 3 list of mesh vertex coordinates
  1219. // F #F by 3 list of mesh faces
  1220. // data struct containing topology information
  1221. // state struct containing the state of the tracing)igl_Qu8mg5v7";
  1222. const char *__doc_igl_triangle_triangle_adjacency = R"igl_Qu8mg5v7(// Constructs the triangle-triangle adjacency matrix for a given
  1223. // mesh (V,F).
  1224. //
  1225. // Templates:
  1226. // Scalar derived type of eigen matrix for V (e.g. derived from
  1227. // MatrixXd)
  1228. // Index derived type of eigen matrix for F (e.g. derived from
  1229. // MatrixXi)
  1230. // Inputs:
  1231. // F #F by simplex_size list of mesh faces (must be triangles)
  1232. // Outputs:
  1233. // TT #F by #3 adjacent matrix, the element i,j is the id of the triangle adjacent to the j edge of triangle i
  1234. // TTi #F by #3 adjacent matrix, the element i,j is the id of edge of the triangle TT(i,j) that is adjacent with triangle i
  1235. // NOTE: the first edge of a triangle is [0,1] the second [1,2] and the third [2,3].
  1236. // this convention is DIFFERENT from cotmatrix_entries.h
  1237. // Known bug: this should not need to take V as input.)igl_Qu8mg5v7";
  1238. const char *__doc_igl_triangle_triangle_adjacency_preprocess = R"igl_Qu8mg5v7(// Preprocessing)igl_Qu8mg5v7";
  1239. const char *__doc_igl_triangle_triangle_adjacency_extractTT = R"igl_Qu8mg5v7(// Extract the face adjacencies)igl_Qu8mg5v7";
  1240. const char *__doc_igl_triangle_triangle_adjacency_extractTTi = R"igl_Qu8mg5v7(// Extract the face adjacencies indices (needed for fast traversal))igl_Qu8mg5v7";
  1241. const char *__doc_igl_triangle_triangulate = R"igl_Qu8mg5v7(// Triangulate the interior of a polygon using the triangle library.
  1242. //
  1243. // Inputs:
  1244. // V #V by 2 list of 2D vertex positions
  1245. // E #E by 2 list of vertex ids forming unoriented edges of the boundary of the polygon
  1246. // H #H by 2 coordinates of points contained inside holes of the polygon
  1247. // flags string of options pass to triangle (see triangle documentation)
  1248. // Outputs:
  1249. // V2 #V2 by 2 coordinates of the vertives of the generated triangulation
  1250. // F2 #F2 by 3 list of indices forming the faces of the generated triangulation
  1251. //
  1252. // TODO: expose the option to prevent Steiner points on the boundary
  1253. //)igl_Qu8mg5v7";
  1254. const char *__doc_igl_unique = R"igl_Qu8mg5v7(// Act like matlab's [C,IA,IC] = unique(X)
  1255. //
  1256. // Templates:
  1257. // T comparable type T
  1258. // Inputs:
  1259. // A #A vector of type T
  1260. // Outputs:
  1261. // C #C vector of unique entries in A
  1262. // IA #C index vector so that C = A(IA);
  1263. // IC #A index vector so that A = C(IC);)igl_Qu8mg5v7";
  1264. const char *__doc_igl_unique_rows = R"igl_Qu8mg5v7(// Act like matlab's [C,IA,IC] = unique(X,'rows')
  1265. //
  1266. // Templates:
  1267. // DerivedA derived scalar type, e.g. MatrixXi or MatrixXd
  1268. // DerivedIA derived integer type, e.g. MatrixXi
  1269. // DerivedIC derived integer type, e.g. MatrixXi
  1270. // Inputs:
  1271. // A m by n matrix whose entries are to unique'd according to rows
  1272. // Outputs:
  1273. // C #C vector of unique rows in A
  1274. // IA #C index vector so that C = A(IA,:);
  1275. // IC #A index vector so that A = C(IC,:);)igl_Qu8mg5v7";
  1276. const char *__doc_igl_unproject_onto_mesh = R"igl_Qu8mg5v7(// Unproject a screen location (using current opengl viewport, projection, and
  1277. // model view) to a 3D position _onto_ a given mesh, if the ray through the
  1278. // given screen location (x,y) _hits_ the mesh.
  1279. //
  1280. // Inputs:
  1281. // pos screen space coordinates
  1282. // model model matrix
  1283. // proj projection matrix
  1284. // viewport vieweport vector
  1285. // V #V by 3 list of mesh vertex positions
  1286. // F #F by 3 list of mesh triangle indices into V
  1287. // Outputs:
  1288. // fid id of the first face hit
  1289. // bc barycentric coordinates of hit
  1290. // Returns true if there's a hit)igl_Qu8mg5v7";
  1291. const char *__doc_igl_upsample = R"igl_Qu8mg5v7(// Subdivide a mesh without moving vertices: loop subdivision but odd
  1292. // vertices stay put and even vertices are just edge midpoints
  1293. //
  1294. // Templates:
  1295. // MatV matrix for vertex positions, e.g. MatrixXd
  1296. // MatF matrix for vertex positions, e.g. MatrixXi
  1297. // Inputs:
  1298. // V #V by dim mesh vertices
  1299. // F #F by 3 mesh triangles
  1300. // Outputs:
  1301. // NV new vertex positions, V is guaranteed to be at top
  1302. // NF new list of face indices
  1303. //
  1304. // NOTE: V should not be the same as NV,
  1305. // NOTE: F should not be the same as NF, use other proto
  1306. //
  1307. // Known issues:
  1308. // - assumes (V,F) is edge-manifold.)igl_Qu8mg5v7";
  1309. const char *__doc_igl_winding_number = R"igl_Qu8mg5v7(// WINDING_NUMBER Compute the sum of solid angles of a triangle/tetrahedron
  1310. // described by points (vectors) V
  1311. //
  1312. // Templates:
  1313. // dim dimension of input
  1314. // Inputs:
  1315. // V n by 3 list of vertex positions
  1316. // F #F by 3 list of triangle indices, minimum index is 0
  1317. // O no by 3 list of origin positions
  1318. // Outputs:
  1319. // S no by 1 list of winding numbers
  1320. //
  1321. // 3d)igl_Qu8mg5v7";
  1322. const char *__doc_igl_winding_number_3 = R"igl_Qu8mg5v7(// Inputs:
  1323. // V pointer to array containing #V by 3 vertex positions along rows,
  1324. // given in column major order
  1325. // n number of mesh vertices
  1326. // F pointer to array containing #F by 3 face indices along rows,
  1327. // given in column major order
  1328. // m number of faces
  1329. // O pointer to array containing #O by 3 query positions along rows,
  1330. // given in column major order
  1331. // no number of origins
  1332. // Outputs:
  1333. // S no by 1 list of winding numbers)igl_Qu8mg5v7";
  1334. const char *__doc_igl_winding_number_2 = R"igl_Qu8mg5v7(//// Only one evaluation origin
  1335. //template <typename DerivedF>
  1336. //IGL_INLINE void winding_number_3(
  1337. // const double * V,
  1338. // const int n,
  1339. // const DerivedF * F,
  1340. // const int m,
  1341. // const double * O,
  1342. // double * S);
  1343. // 2d)igl_Qu8mg5v7";
  1344. const char *__doc_igl_writeMESH = R"igl_Qu8mg5v7(// save a tetrahedral volume mesh to a .mesh file
  1345. //
  1346. // Templates:
  1347. // Scalar type for positions and vectors (will be cast as double)
  1348. // Index type for indices (will be cast to int)
  1349. // Input:
  1350. // mesh_file_name path of .mesh file
  1351. // V double matrix of vertex positions #V by 3
  1352. // T #T list of tet indices into vertex positions
  1353. // F #F list of face indices into vertex positions
  1354. //
  1355. // Known bugs: Holes and regions are not supported)igl_Qu8mg5v7";
  1356. const char *__doc_igl_writeOBJ = R"igl_Qu8mg5v7(// Write a mesh in an ascii obj file
  1357. // Inputs:
  1358. // str path to outputfile
  1359. // V #V by 3 mesh vertex positions
  1360. // F #F by 3|4 mesh indices into V
  1361. // CN #CN by 3 normal vectors
  1362. // FN #F by 3|4 corner normal indices into CN
  1363. // TC #TC by 2|3 texture coordinates
  1364. // FTC #F by 3|4 corner texture coord indices into TC
  1365. // Returns true on success, false on error)igl_Qu8mg5v7";