123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632 |
- const char *__doc_igl_principal_curvature = R"igl_Qu8mg5v7(// Compute the principal curvature directions and magnitude of the given triangle mesh
- // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
- // DerivedF derived from face indices matrix type: i.e. MatrixXi
- // Inputs:
- // V eigen matrix #V by 3
- // F #F by 3 list of mesh faces (must be triangles)
- // radius controls the size of the neighbourhood used, 1 = average edge lenght
- //
- // Outputs:
- // PD1 #V by 3 maximal curvature direction for each vertex.
- // PD2 #V by 3 minimal curvature direction for each vertex.
- // PV1 #V by 1 maximal curvature value for each vertex.
- // PV2 #V by 1 minimal curvature value for each vertex.
- //
- // See also: average_onto_faces, average_onto_vertices
- //
- // This function has been developed by: Nikolas De Giorgis, Luigi Rocca and Enrico Puppo.
- // The algorithm is based on:
- // Efficient Multi-scale Curvature and Crease Estimation
- // Daniele Panozzo, Enrico Puppo, Luigi Rocca
- // GraVisMa, 2010)igl_Qu8mg5v7";
- const char *__doc_igl_local_basis = R"igl_Qu8mg5v7(// Compute a local orthogonal reference system for each triangle in the given mesh
- // Templates:
- // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
- // DerivedF derived from face indices matrix type: i.e. MatrixXi
- // Inputs:
- // V eigen matrix #V by 3
- // F #F by 3 list of mesh faces (must be triangles)
- // Outputs:
- // B1 eigen matrix #F by 3, each vector is tangent to the triangle
- // B2 eigen matrix #F by 3, each vector is tangent to the triangle and perpendicular to B1
- // B3 eigen matrix #F by 3, normal of the triangle
- //
- // See also: adjacency_matrix)igl_Qu8mg5v7";
- const char *__doc_igl_cotmatrix = R"igl_Qu8mg5v7(// Constructs the cotangent stiffness matrix (discrete laplacian) for a given
- // mesh (V,F).
- //
- // Templates:
- // DerivedV derived type of eigen matrix for V (e.g. derived from
- // MatrixXd)
- // DerivedF derived type of eigen matrix for F (e.g. derived from
- // MatrixXi)
- // Scalar scalar type for eigen sparse matrix (e.g. double)
- // Inputs:
- // V #V by dim list of mesh vertex positions
- // F #F by simplex_size list of mesh faces (must be triangles)
- // Outputs:
- // L #V by #V cotangent matrix, each row i corresponding to V(i,:)
- //
- // See also: adjacency_matrix
- //
- // Note: This Laplacian uses the convention that diagonal entries are
- // **minus** the sum of off-diagonal entries. The diagonal entries are
- // therefore in general negative and the matrix is **negative** semi-definite
- // (immediately, -L is **positive** semi-definite)
- //
- // Known bugs: off by 1e-16 on regular grid. I think its a problem of
- // arithmetic order in cotmatrix_entries.h: C(i,e) = (arithmetic)/dblA/4)igl_Qu8mg5v7";
- const char *__doc_igl_floor = R"igl_Qu8mg5v7(// Floor a given matrix to nearest integers
- //
- // Inputs:
- // X m by n matrix of scalars
- // Outputs:
- // Y m by n matrix of floored integers)igl_Qu8mg5v7";
- const char *__doc_igl_slice = R"igl_Qu8mg5v7(// Act like the matlab X(row_indices,col_indices) operator, where
- // row_indices, col_indices are non-negative integer indices.
- //
- // Inputs:
- // X m by n matrix
- // R list of row indices
- // C list of column indices
- // Output:
- // Y #R by #C matrix
- //
- // See also: slice_mask)igl_Qu8mg5v7";
- const char *__doc_igl_per_face_normals = R"igl_Qu8mg5v7(// Compute face normals via vertex position list, face list
- // Inputs:
- // V #V by 3 eigen Matrix of mesh vertex 3D positions
- // F #F by 3 eigen Matrix of face (triangle) indices
- // Z 3 vector normal given to faces with degenerate normal.
- // Output:
- // N #F by 3 eigen Matrix of mesh face (triangle) 3D normals
- //
- // Example:
- // // Give degenerate faces (1/3,1/3,1/3)^0.5
- // per_face_normals(V,F,Vector3d(1,1,1).normalized(),N);)igl_Qu8mg5v7";
- const char *__doc_igl_per_face_normals_stable = R"igl_Qu8mg5v7(// Special version where order of face indices is guaranteed not to effect
- // output.)igl_Qu8mg5v7";
- const char *__doc_igl_readOFF = R"igl_Qu8mg5v7(// Read a mesh from an ascii obj file, filling in vertex positions, normals
- // and texture coordinates. Mesh may have faces of any number of degree
- //
- // Templates:
- // Scalar type for positions and vectors (will be read as double and cast
- // to Scalar)
- // Index type for indices (will be read as int and cast to Index)
- // Inputs:
- // str path to .obj file
- // Outputs:
- // V double matrix of vertex positions #V by 3
- // F #F list of face indices into vertex positions
- // TC double matrix of texture coordinats #TC by 2
- // FTC #F list of face indices into vertex texture coordinates
- // N double matrix of corner normals #N by 3
- // FN #F list of face indices into vertex normals
- // Returns true on success, false on errors)igl_Qu8mg5v7";
- const char *__doc_igl_per_vertex_normals = R"igl_Qu8mg5v7(// Compute vertex normals via vertex position list, face list
- // Inputs:
- // V #V by 3 eigen Matrix of mesh vertex 3D positions
- // F #F by 3 eigne Matrix of face (triangle) indices
- // weighting Weighting type
- // Output:
- // N #V by 3 eigen Matrix of mesh vertex 3D normals)igl_Qu8mg5v7";
- const char *__doc_igl_sortrows = R"igl_Qu8mg5v7(// Act like matlab's [Y,I] = sortrows(X)
- //
- // Templates:
- // DerivedX derived scalar type, e.g. MatrixXi or MatrixXd
- // DerivedI derived integer type, e.g. MatrixXi
- // Inputs:
- // X m by n matrix whose entries are to be sorted
- // ascending sort ascending (true, matlab default) or descending (false)
- // Outputs:
- // Y m by n matrix whose entries are sorted (**should not** be same
- // reference as X)
- // I m list of indices so that
- // Y = X(I,:);)igl_Qu8mg5v7";
- const char *__doc_igl_barycenter = R"igl_Qu8mg5v7(// Computes the barycenter of every simplex
- //
- // Inputs:
- // V #V x dim matrix of vertex coordinates
- // F #F x simplex_size matrix of indices of simplex corners into V
- // Output:
- // BC #F x dim matrix of 3d vertices
- //)igl_Qu8mg5v7";
- const char *__doc_igl_jet = R"igl_Qu8mg5v7(// JET like MATLAB's jet
- //
- // Inputs:
- // m number of colors
- // Outputs:
- // J m by list of RGB colors between 0 and 1
- //
- //#ifndef IGL_NO_EIGEN
- // void jet(const int m, Eigen::MatrixXd & J);
- //#endif
- // Wrapper for directly computing [r,g,b] values for a given factor f between
- // 0 and 1
- //
- // Inputs:
- // f factor determining color value as if 0 was min and 1 was max
- // Outputs:
- // r red value
- // g green value
- // b blue value)igl_Qu8mg5v7";
- const char *__doc_igl_eigs = R"igl_Qu8mg5v7(See eigs for the documentation.)igl_Qu8mg5v7";
- const char *__doc_igl_per_corner_normals = R"igl_Qu8mg5v7(// Compute vertex normals via vertex position list, face list
- // Inputs:
- // V #V by 3 eigen Matrix of mesh vertex 3D positions
- // F #F by 3 eigne Matrix of face (triangle) indices
- // corner_threshold threshold in degrees on sharp angles
- // Output:
- // CN #F*3 by 3 eigen Matrix of mesh vertex 3D normals, where the normal
- // for corner F(i,j) is at CN(i*3+j,:) )igl_Qu8mg5v7";
- const char *__doc_igl_massmatrix = R"igl_Qu8mg5v7(// Constructs the mass (area) matrix for a given mesh (V,F).
- //
- // Templates:
- // DerivedV derived type of eigen matrix for V (e.g. derived from
- // MatrixXd)
- // DerivedF derived type of eigen matrix for F (e.g. derived from
- // MatrixXi)
- // Scalar scalar type for eigen sparse matrix (e.g. double)
- // Inputs:
- // V #V by dim list of mesh vertex positions
- // F #F by simplex_size list of mesh faces (must be triangles)
- // type one of the following ints:
- // MASSMATRIX_TYPE_BARYCENTRIC barycentric
- // MASSMATRIX_TYPE_VORONOI voronoi-hybrid {default}
- // MASSMATRIX_TYPE_FULL full {not implemented}
- // Outputs:
- // M #V by #V mass matrix
- //
- // See also: adjacency_matrix
- //)igl_Qu8mg5v7";
- const char *__doc_igl_colon = R"igl_Qu8mg5v7(// Colon operator like matlab's colon operator. Enumerats values between low
- // and hi with step step.
- // Templates:
- // L should be a eigen matrix primitive type like int or double
- // S should be a eigen matrix primitive type like int or double
- // H should be a eigen matrix primitive type like int or double
- // T should be a eigen matrix primitive type like int or double
- // Inputs:
- // low starting value if step is valid then this is *always* the first
- // element of I
- // step step difference between sequential elements returned in I,
- // remember this will be cast to template T at compile time. If low<hi
- // then step must be positive. If low>hi then step must be negative.
- // Otherwise I will be set to empty.
- // hi ending value, if (hi-low)%step is zero then this will be the last
- // element in I. If step is positive there will be no elements greater
- // than hi, vice versa if hi<low
- // Output:
- // I list of values from low to hi with step size step)igl_Qu8mg5v7";
- const char *__doc_igl_rotate_vectors = R"igl_Qu8mg5v7(// Rotate the vectors V by A radiants on the tangent plane spanned by B1 and
- // B2
- //
- // Inputs:
- // V #V by 3 eigen Matrix of vectors
- // A #V eigen vector of rotation angles or a single angle to be applied
- // to all vectors
- // B1 #V by 3 eigen Matrix of base vector 1
- // B2 #V by 3 eigen Matrix of base vector 2
- //
- // Output:
- // Returns the rotated vectors
- //)igl_Qu8mg5v7";
- const char *__doc_igl_read_triangle_mesh = R"igl_Qu8mg5v7(// read mesh from an ascii file with automatic detection of file format.
- // supported: obj, off, stl, wrl, ply, mesh)
- //
- // Templates:
- // Scalar type for positions and vectors (will be read as double and cast
- // to Scalar)
- // Index type for indices (will be read as int and cast to Index)
- // Inputs:
- // str path to file
- // Outputs:
- // V eigen double matrix #V by 3
- // F eigen int matrix #F by 3
- // Returns true iff success)igl_Qu8mg5v7";
- const char *__doc_igl_gaussian_curvature = R"igl_Qu8mg5v7(// Compute discrete local integral gaussian curvature (angle deficit, without
- // averaging by local area).
- //
- // Inputs:
- // V #V by 3 eigen Matrix of mesh vertex 3D positions
- // F #F by 3 eigen Matrix of face (triangle) indices
- // Output:
- // K #V by 1 eigen Matrix of discrete gaussian curvature values
- //)igl_Qu8mg5v7";
- const char *__doc_igl_avg_edge_length = R"igl_Qu8mg5v7(// Compute the average edge length for the given triangle mesh
- // Templates:
- // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
- // DerivedF derived from face indices matrix type: i.e. MatrixXi
- // DerivedL derived from edge lengths matrix type: i.e. MatrixXd
- // Inputs:
- // V eigen matrix #V by 3
- // F #F by simplex-size list of mesh faces (must be simplex)
- // Outputs:
- // l average edge length
- //
- // See also: adjacency_matrix)igl_Qu8mg5v7";
- const char *__doc_igl_lscm = R"igl_Qu8mg5v7(// Compute a Least-squares conformal map parametrization (equivalently
- // derived in "Intrinsic Parameterizations of Surface Meshes" [Desbrun et al.
- // 2002] and "Least Squares Conformal Maps for Automatic Texture Atlas
- // Generation" [Lévy et al. 2002]), though this implementation follows the
- // derivation in: "Spectral Conformal Parameterization" [Mullen et al. 2008]
- // (note, this does **not** implement the Eigen-decomposition based method in
- // [Mullen et al. 2008], which is not equivalent). Input should be a manifold
- // mesh (also no unreferenced vertices) and "boundary" (fixed vertices) `b`
- // should contain at least two vertices per connected component.
- //
- // Inputs:
- // V #V by 3 list of mesh vertex positions
- // F #F by 3 list of mesh faces (must be triangles)
- // b #b boundary indices into V
- // bc #b by 3 list of boundary values
- // Outputs:
- // UV #V by 2 list of 2D mesh vertex positions in UV space
- // Returns true only on solver success.
- //)igl_Qu8mg5v7";
- const char *__doc_igl_find_cross_field_singularities = R"igl_Qu8mg5v7(// Inputs:
- // V #V by 3 eigen Matrix of mesh vertex 3D positions
- // F #F by 3 eigen Matrix of face (quad) indices
- // Handle_MMatch #F by 3 eigen Matrix containing the integer missmatch of the cross field
- // across all face edges
- // Output:
- // isSingularity #V by 1 boolean eigen Vector indicating the presence of a singularity on a vertex
- // singularityIndex #V by 1 integer eigen Vector containing the singularity indices
- //)igl_Qu8mg5v7";
- const char *__doc_igl_parula = R"igl_Qu8mg5v7(// PARULA like MATLAB's parula
- //
- // Inputs:
- // m number of colors
- // Outputs:
- // J m by list of RGB colors between 0 and 1
- //
- // Wrapper for directly computing [r,g,b] values for a given factor f between
- // 0 and 1
- //
- // Inputs:
- // f factor determining color value as if 0 was min and 1 was max
- // Outputs:
- // r red value
- // g green value
- // b blue value)igl_Qu8mg5v7";
- const char *__doc_igl_setdiff = R"igl_Qu8mg5v7(// Set difference of elements of matrices
- //
- // Inputs:
- // A m-long vector of indices
- // B n-long vector of indices
- // Outputs:
- // C (k<=m)-long vector of unique elements appearing in A but not in B
- // IA (k<=m)-long list of indices into A so that C = A(IA)
- //)igl_Qu8mg5v7";
- const char *__doc_igl_comb_frame_field = R"igl_Qu8mg5v7(// Inputs:
- // V #V by 3 eigen Matrix of mesh vertex 3D positions
- // F #F by 4 eigen Matrix of face (quad) indices
- // PD1 #F by 3 eigen Matrix of the first per face cross field vector
- // PD2 #F by 3 eigen Matrix of the second per face cross field vector
- // BIS1_combed #F by 3 eigen Matrix of the first combed bisector field vector
- // BIS2_combed #F by 3 eigen Matrix of the second combed bisector field vector
- // Output:
- // PD1_combed #F by 3 eigen Matrix of the first combed cross field vector
- // PD2_combed #F by 3 eigen Matrix of the second combed cross field vector
- //)igl_Qu8mg5v7";
- const char *__doc_igl_map_vertices_to_circle = R"igl_Qu8mg5v7(// Map the vertices whose indices are in a given boundary loop (bnd) on the
- // unit circle with spacing proportional to the original boundary edge
- // lengths.
- //
- // Inputs:
- // V #V by dim list of mesh vertex positions
- // b #W list of vertex ids
- // Outputs:
- // UV #W by 2 list of 2D position on the unit circle for the vertices in b)igl_Qu8mg5v7";
- const char *__doc_igl_writeOBJ = R"igl_Qu8mg5v7(// Write a mesh in an ascii obj file
- // Inputs:
- // str path to outputfile
- // V #V by 3 mesh vertex positions
- // F #F by 3|4 mesh indices into V
- // CN #CN by 3 normal vectors
- // FN #F by 3|4 corner normal indices into CN
- // TC #TC by 2|3 texture coordinates
- // FTC #F by 3|4 corner texture coord indices into TC
- // Returns true on success, false on error)igl_Qu8mg5v7";
- const char *__doc_igl_active_set = R"igl_Qu8mg5v7(// Known Bugs: rows of [Aeq;Aieq] **must** be linearly independent. Should be
- // using QR decomposition otherwise:
- // http://www.okstate.edu/sas/v8/sashtml/ormp/chap5/sect32.htm
- //
- // ACTIVE_SET Minimize quadratic energy
- //
- // 0.5*Z'*A*Z + Z'*B + C with constraints
- //
- // that Z(known) = Y, optionally also subject to the constraints Aeq*Z = Beq,
- // and further optionally subject to the linear inequality constraints that
- // Aieq*Z <= Bieq and constant inequality constraints lx <= x <= ux
- //
- // Inputs:
- // A n by n matrix of quadratic coefficients
- // B n by 1 column of linear coefficients
- // known list of indices to known rows in Z
- // Y list of fixed values corresponding to known rows in Z
- // Aeq meq by n list of linear equality constraint coefficients
- // Beq meq by 1 list of linear equality constraint constant values
- // Aieq mieq by n list of linear inequality constraint coefficients
- // Bieq mieq by 1 list of linear inequality constraint constant values
- // lx n by 1 list of lower bounds [] implies -Inf
- // ux n by 1 list of upper bounds [] implies Inf
- // params struct of additional parameters (see below)
- // Z if not empty, is taken to be an n by 1 list of initial guess values
- // (see output)
- // Outputs:
- // Z n by 1 list of solution values
- // Returns true on success, false on error
- //
- // Benchmark: For a harmonic solve on a mesh with 325K facets, matlab 2.2
- // secs, igl/min_quad_with_fixed.h 7.1 secs
- //)igl_Qu8mg5v7";
- const char *__doc_igl_boundary_facets = R"igl_Qu8mg5v7(// BOUNDARY_FACETS Determine boundary faces (edges) of tetrahedra (triangles)
- // stored in T (analogous to qptoolbox's `outline` and `boundary_faces`).
- //
- // Templates:
- // IntegerT integer-value: e.g. int
- // IntegerF integer-value: e.g. int
- // Input:
- // T tetrahedron (triangle) index list, m by 4 (3), where m is the number of tetrahedra
- // Output:
- // F list of boundary faces, n by 3 (2), where n is the number of boundary faces
- //
- //)igl_Qu8mg5v7";
- const char *__doc_igl_compute_frame_field_bisectors = R"igl_Qu8mg5v7(// Compute bisectors of a frame field defined on mesh faces
- // Inputs:
- // V #V by 3 eigen Matrix of mesh vertex 3D positions
- // F #F by 3 eigen Matrix of face (triangle) indices
- // B1 #F by 3 eigen Matrix of face (triangle) base vector 1
- // B2 #F by 3 eigen Matrix of face (triangle) base vector 2
- // PD1 #F by 3 eigen Matrix of the first per face frame field vector
- // PD2 #F by 3 eigen Matrix of the second per face frame field vector
- // Output:
- // BIS1 #F by 3 eigen Matrix of the first per face frame field bisector
- // BIS2 #F by 3 eigen Matrix of the second per face frame field bisector
- //)igl_Qu8mg5v7";
- const char *__doc_igl_readOBJ = R"igl_Qu8mg5v7(// Read a mesh from an ascii obj file, filling in vertex positions, normals
- // and texture coordinates. Mesh may have faces of any number of degree
- //
- // Templates:
- // Scalar type for positions and vectors (will be read as double and cast
- // to Scalar)
- // Index type for indices (will be read as int and cast to Index)
- // Inputs:
- // str path to .obj file
- // Outputs:
- // V double matrix of vertex positions #V by 3
- // TC double matrix of texture coordinats #TC by 2
- // N double matrix of corner normals #N by 3
- // F #F list of face indices into vertex positions
- // FTC #F list of face indices into vertex texture coordinates
- // FN #F list of face indices into vertex normals
- // Returns true on success, false on errors)igl_Qu8mg5v7";
- const char *__doc_igl_cut_mesh_from_singularities = R"igl_Qu8mg5v7(// Given a mesh (V,F) and the integer mismatch of a cross field per edge
- // (MMatch), finds the cut_graph connecting the singularities (seams) and the
- // degree of the singularities singularity_index
- //
- // Input:
- // V #V by 3 list of mesh vertex positions
- // F #F by 3 list of faces
- // MMatch #F by 3 list of per corner integer mismatch
- // Outputs:
- // seams #F by 3 list of per corner booleans that denotes if an edge is a
- // seam or not
- //)igl_Qu8mg5v7";
- const char *__doc_igl_readDMAT = R"igl_Qu8mg5v7(See readDMAT for the documentation.)igl_Qu8mg5v7";
- const char *__doc_igl_doublearea = R"igl_Qu8mg5v7(// DOUBLEAREA computes twice the area for each input triangle[quad]
- //
- // Templates:
- // DerivedV derived type of eigen matrix for V (e.g. derived from
- // MatrixXd)
- // DerivedF derived type of eigen matrix for F (e.g. derived from
- // MatrixXi)
- // DeriveddblA derived type of eigen matrix for dblA (e.g. derived from
- // MatrixXd)
- // Inputs:
- // V #V by dim list of mesh vertex positions
- // F #F by simplex_size list of mesh faces (must be triangles or quads)
- // Outputs:
- // dblA #F list of triangle[quad] double areas (SIGNED only for 2D input)
- //
- // Known bug: For dim==3 complexity is O(#V + #F)!! Not just O(#F). This is a big deal
- // if you have 1million unreferenced vertices and 1 face)igl_Qu8mg5v7";
- const char *__doc_igl_doublearea_single = R"igl_Qu8mg5v7(// Single triangle in 2D!
- //
- // This should handle streams of corners not just single corners)igl_Qu8mg5v7";
- const char *__doc_igl_doublearea_quad = R"igl_Qu8mg5v7(// DOUBLEAREA_QUAD computes twice the area for each input quadrilateral
- //
- // Inputs:
- // V #V by dim list of mesh vertex positions
- // F #F by simplex_size list of mesh faces (must be quadrilaterals)
- // Outputs:
- // dblA #F list of quadrilateral double areas
- //)igl_Qu8mg5v7";
- const char *__doc_igl_min_quad_with_fixed_precompute = R"igl_Qu8mg5v7(// Known Bugs: rows of Aeq **should probably** be linearly independent.
- // During precomputation, the rows of a Aeq are checked via QR. But in case
- // they're not then resulting probably will no longer be sparse: it will be
- // slow.
- //
- // MIN_QUAD_WITH_FIXED Minimize quadratic energy
- //
- // 0.5*Z'*A*Z + Z'*B + C with
- //
- // constraints that Z(known) = Y, optionally also subject to the constraints
- // Aeq*Z = Beq
- //
- // Templates:
- // T should be a eigen matrix primitive type like int or double
- // Inputs:
- // A n by n matrix of quadratic coefficients
- // known list of indices to known rows in Z
- // Y list of fixed values corresponding to known rows in Z
- // Aeq m by n list of linear equality constraint coefficients
- // pd flag specifying whether A(unknown,unknown) is positive definite
- // Outputs:
- // data factorization struct with all necessary information to solve
- // using min_quad_with_fixed_solve
- // Returns true on success, false on error
- //
- // Benchmark: For a harmonic solve on a mesh with 325K facets, matlab 2.2
- // secs, igl/min_quad_with_fixed.h 7.1 secs
- //)igl_Qu8mg5v7";
- const char *__doc_igl_min_quad_with_fixed_solve = R"igl_Qu8mg5v7(// Solves a system previously factored using min_quad_with_fixed_precompute
- //
- // Template:
- // T type of sparse matrix (e.g. double)
- // DerivedY type of Y (e.g. derived from VectorXd or MatrixXd)
- // DerivedZ type of Z (e.g. derived from VectorXd or MatrixXd)
- // Inputs:
- // data factorization struct with all necessary precomputation to solve
- // B n by 1 column of linear coefficients
- // Y b by 1 list of constant fixed values
- // Beq m by 1 list of linear equality constraint constant values
- // Outputs:
- // Z n by cols solution
- // sol #unknowns+#lagrange by cols solution to linear system
- // Returns true on success, false on error)igl_Qu8mg5v7";
- const char *__doc_igl_min_quad_with_fixed = R"igl_Qu8mg5v7(See min_quad_with_fixed for the documentation.)igl_Qu8mg5v7";
- const char *__doc_igl_unique = R"igl_Qu8mg5v7(// Act like matlab's [C,IA,IC] = unique(X)
- //
- // Templates:
- // T comparable type T
- // Inputs:
- // A #A vector of type T
- // Outputs:
- // C #C vector of unique entries in A
- // IA #C index vector so that C = A(IA);
- // IC #A index vector so that A = C(IC);)igl_Qu8mg5v7";
- const char *__doc_igl_unique_rows = R"igl_Qu8mg5v7(// Act like matlab's [C,IA,IC] = unique(X,'rows')
- //
- // Templates:
- // DerivedA derived scalar type, e.g. MatrixXi or MatrixXd
- // DerivedIA derived integer type, e.g. MatrixXi
- // DerivedIC derived integer type, e.g. MatrixXi
- // Inputs:
- // A m by n matrix whose entries are to unique'd according to rows
- // Outputs:
- // C #C vector of unique rows in A
- // IA #C index vector so that C = A(IA,:);
- // IC #A index vector so that A = C(IC,:);)igl_Qu8mg5v7";
- const char *__doc_igl_arap_precomputation = R"igl_Qu8mg5v7(// Compute necessary information to start using an ARAP deformation
- //
- // Inputs:
- // V #V by dim list of mesh positions
- // F #F by simplex-size list of triangle|tet indices into V
- // dim dimension being used at solve time. For deformation usually dim =
- // V.cols(), for surface parameterization V.cols() = 3 and dim = 2
- // b #b list of "boundary" fixed vertex indices into V
- // Outputs:
- // data struct containing necessary precomputation)igl_Qu8mg5v7";
- const char *__doc_igl_arap_solve = R"igl_Qu8mg5v7(// Inputs:
- // bc #b by dim list of boundary conditions
- // data struct containing necessary precomputation and parameters
- // U #V by dim initial guess)igl_Qu8mg5v7";
- const char *__doc_igl_cross_field_missmatch = R"igl_Qu8mg5v7(// Inputs:
- // V #V by 3 eigen Matrix of mesh vertex 3D positions
- // F #F by 3 eigen Matrix of face (quad) indices
- // PD1 #F by 3 eigen Matrix of the first per face cross field vector
- // PD2 #F by 3 eigen Matrix of the second per face cross field vector
- // isCombed boolean, specifying whether the field is combed (i.e. matching has been precomputed.
- // If not, the field is combed first.
- // Output:
- // Handle_MMatch #F by 3 eigen Matrix containing the integer missmatch of the cross field
- // across all face edges
- //)igl_Qu8mg5v7";
- const char *__doc_igl_grad = R"igl_Qu8mg5v7(// Gradient of a scalar function defined on piecewise linear elements (mesh)
- // is constant on each triangle i,j,k:
- // grad(Xijk) = (Xj-Xi) * (Vi - Vk)^R90 / 2A + (Xk-Xi) * (Vj - Vi)^R90 / 2A
- // where Xi is the scalar value at vertex i, Vi is the 3D position of vertex
- // i, and A is the area of triangle (i,j,k). ^R90 represent a rotation of
- // 90 degrees
- //)igl_Qu8mg5v7";
- const char *__doc_igl_slice_into = R"igl_Qu8mg5v7(// Act like the matlab Y(row_indices,col_indices) = X
- //
- // Inputs:
- // X xm by xn rhs matrix
- // R list of row indices
- // C list of column indices
- // Y ym by yn lhs matrix
- // Output:
- // Y ym by yn lhs matrix, same as input but Y(R,C) = X)igl_Qu8mg5v7";
- const char *__doc_igl_n_polyvector = R"igl_Qu8mg5v7(// Inputs:
- // v0, v1 the two #3 by 1 vectors
- // normalized boolean, if false, then the vectors are normalized prior to the calculation
- // Output:
- // 3 by 3 rotation matrix that takes v0 to v1
- //)igl_Qu8mg5v7";
- const char *__doc_igl_harmonic = R"igl_Qu8mg5v7(// Compute k-harmonic weight functions "coordinates".
- //
- //
- // Inputs:
- // V #V by dim vertex positions
- // F #F by simplex-size list of element indices
- // b #b boundary indices into V
- // bc #b by #W list of boundary values
- // k power of harmonic operation (1: harmonic, 2: biharmonic, etc)
- // Outputs:
- // W #V by #W list of weights
- //)igl_Qu8mg5v7";
- const char *__doc_igl_boundary_loop = R"igl_Qu8mg5v7(// Compute list of ordered boundary loops for a manifold mesh.
- //
- // Templates:
- // Index index type
- // Inputs:
- // F #V by dim list of mesh faces
- // Outputs:
- // L list of loops where L[i] = ordered list of boundary vertices in loop i
- //)igl_Qu8mg5v7";
- const char *__doc_igl_comb_cross_field = R"igl_Qu8mg5v7(// Inputs:
- // V #V by 3 eigen Matrix of mesh vertex 3D positions
- // F #F by 4 eigen Matrix of face (quad) indices
- // PD1in #F by 3 eigen Matrix of the first per face cross field vector
- // PD2in #F by 3 eigen Matrix of the second per face cross field vector
- // Output:
- // PD1out #F by 3 eigen Matrix of the first combed cross field vector
- // PD2out #F by 3 eigen Matrix of the second combed cross field vector
- //)igl_Qu8mg5v7";
- const char *__doc_igl_invert_diag = R"igl_Qu8mg5v7(// Templates:
- // T should be a eigen sparse matrix primitive type like int or double
- // Inputs:
- // X an m by n sparse matrix
- // Outputs:
- // Y an m by n sparse matrix)igl_Qu8mg5v7";
- const char *__doc_igl_copyleft_comiso_miq = R"igl_Qu8mg5v7(// Inputs:
- // V #V by 3 list of mesh vertex 3D positions
- // F #F by 3 list of faces indices in V
- // PD1 #V by 3 first line of the Jacobian per triangle
- // PD2 #V by 3 second line of the Jacobian per triangle
- // (optional, if empty it will be a vector in the tangent plane orthogonal to PD1)
- // scale global scaling for the gradient (controls the quads resolution)
- // stiffness weight for the stiffness iterations
- // direct_round greedily round all integer variables at once (greatly improves optimization speed but lowers quality)
- // iter stiffness iterations (0 = no stiffness)
- // local_iter number of local iterations for the integer rounding
- // do_round enables the integer rounding (disabling it could be useful for debugging)
- // round_vertices id of additional vertices that should be snapped to integer coordinates
- // hard_features #H by 2 list of pairs of vertices that belongs to edges that should be snapped to integer coordinates
- //
- // Output:
- // UV #UV by 2 list of vertices in 2D
- // FUV #FUV by 3 list of face indices in UV
- //
- // TODO: rename the parameters name in the cpp consistenly
- // improve the handling of hard_features, right now it might fail in difficult cases)igl_Qu8mg5v7";
- const char *__doc_igl_copyleft_comiso_nrosy = R"igl_Qu8mg5v7(// Generate a N-RoSy field from a sparse set of constraints
- //
- // Inputs:
- // V #V by 3 list of mesh vertex coordinates
- // F #F by 3 list of mesh faces (must be triangles)
- // b #B by 1 list of constrained face indices
- // bc #B by 3 list of representative vectors for the constrained
- // faces
- // b_soft #S by 1 b for soft constraints
- // w_soft #S by 1 weight for the soft constraints (0-1)
- // bc_soft #S by 3 bc for soft constraints
- // N the degree of the N-RoSy vector field
- // soft the strenght of the soft contraints w.r.t. smoothness
- // (0 -> smoothness only, 1->constraints only)
- // Outputs:
- // R #F by 3 the representative vectors of the interpolated field
- // S #V by 1 the singularity index for each vertex (0 = regular))igl_Qu8mg5v7";
|