py_doc.cpp 57 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219
  1. const char *__doc_igl_active_set = R"igl_Qu8mg5v7(// Known Bugs: rows of [Aeq;Aieq] **must** be linearly independent. Should be
  2. // using QR decomposition otherwise:
  3. // http://www.okstate.edu/sas/v8/sashtml/ormp/chap5/sect32.htm
  4. //
  5. // ACTIVE_SET Minimize quadratic energy
  6. //
  7. // 0.5*Z'*A*Z + Z'*B + C with constraints
  8. //
  9. // that Z(known) = Y, optionally also subject to the constraints Aeq*Z = Beq,
  10. // and further optionally subject to the linear inequality constraints that
  11. // Aieq*Z <= Bieq and constant inequality constraints lx <= x <= ux
  12. //
  13. // Inputs:
  14. // A n by n matrix of quadratic coefficients
  15. // B n by 1 column of linear coefficients
  16. // known list of indices to known rows in Z
  17. // Y list of fixed values corresponding to known rows in Z
  18. // Aeq meq by n list of linear equality constraint coefficients
  19. // Beq meq by 1 list of linear equality constraint constant values
  20. // Aieq mieq by n list of linear inequality constraint coefficients
  21. // Bieq mieq by 1 list of linear inequality constraint constant values
  22. // lx n by 1 list of lower bounds [] implies -Inf
  23. // ux n by 1 list of upper bounds [] implies Inf
  24. // params struct of additional parameters (see below)
  25. // Z if not empty, is taken to be an n by 1 list of initial guess values
  26. // (see output)
  27. // Outputs:
  28. // Z n by 1 list of solution values
  29. // Returns true on success, false on error
  30. //
  31. // Benchmark: For a harmonic solve on a mesh with 325K facets, matlab 2.2
  32. // secs, igl/min_quad_with_fixed.h 7.1 secs
  33. //)igl_Qu8mg5v7";
  34. const char *__doc_igl_arap_precomputation = R"igl_Qu8mg5v7(// Compute necessary information to start using an ARAP deformation
  35. //
  36. // Inputs:
  37. // V #V by dim list of mesh positions
  38. // F #F by simplex-size list of triangle|tet indices into V
  39. // dim dimension being used at solve time. For deformation usually dim =
  40. // V.cols(), for surface parameterization V.cols() = 3 and dim = 2
  41. // b #b list of "boundary" fixed vertex indices into V
  42. // Outputs:
  43. // data struct containing necessary precomputation)igl_Qu8mg5v7";
  44. const char *__doc_igl_arap_solve = R"igl_Qu8mg5v7(// Inputs:
  45. // bc #b by dim list of boundary conditions
  46. // data struct containing necessary precomputation and parameters
  47. // U #V by dim initial guess)igl_Qu8mg5v7";
  48. const char *__doc_igl_avg_edge_length = R"igl_Qu8mg5v7(// Compute the average edge length for the given triangle mesh
  49. // Templates:
  50. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  51. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  52. // DerivedL derived from edge lengths matrix type: i.e. MatrixXd
  53. // Inputs:
  54. // V eigen matrix #V by 3
  55. // F #F by simplex-size list of mesh faces (must be simplex)
  56. // Outputs:
  57. // l average edge length
  58. //
  59. // See also: adjacency_matrix)igl_Qu8mg5v7";
  60. const char *__doc_igl_barycenter = R"igl_Qu8mg5v7(// Computes the barycenter of every simplex
  61. //
  62. // Inputs:
  63. // V #V x dim matrix of vertex coordinates
  64. // F #F x simplex_size matrix of indices of simplex corners into V
  65. // Output:
  66. // BC #F x dim matrix of 3d vertices
  67. //)igl_Qu8mg5v7";
  68. const char *__doc_igl_barycentric_coordinates = R"igl_Qu8mg5v7(// Compute barycentric coordinates in a tet
  69. //
  70. // Inputs:
  71. // P #P by 3 Query points in 3d
  72. // A #P by 3 Tet corners in 3d
  73. // B #P by 3 Tet corners in 3d
  74. // C #P by 3 Tet corners in 3d
  75. // D #P by 3 Tet corners in 3d
  76. // Outputs:
  77. // L #P by 4 list of barycentric coordinates
  78. // )igl_Qu8mg5v7";
  79. const char *__doc_igl_boundary_facets = R"igl_Qu8mg5v7(// BOUNDARY_FACETS Determine boundary faces (edges) of tetrahedra (triangles)
  80. // stored in T (analogous to qptoolbox's `outline` and `boundary_faces`).
  81. //
  82. // Templates:
  83. // IntegerT integer-value: e.g. int
  84. // IntegerF integer-value: e.g. int
  85. // Input:
  86. // T tetrahedron (triangle) index list, m by 4 (3), where m is the number of tetrahedra
  87. // Output:
  88. // F list of boundary faces, n by 3 (2), where n is the number of boundary faces
  89. //
  90. //)igl_Qu8mg5v7";
  91. const char *__doc_igl_boundary_loop = R"igl_Qu8mg5v7(// Compute list of ordered boundary loops for a manifold mesh.
  92. //
  93. // Templates:
  94. // Index index type
  95. // Inputs:
  96. // F #V by dim list of mesh faces
  97. // Outputs:
  98. // L list of loops where L[i] = ordered list of boundary vertices in loop i
  99. //)igl_Qu8mg5v7";
  100. const char *__doc_igl_cat = R"igl_Qu8mg5v7(// Perform concatenation of a two matrices along a single dimension
  101. // If dim == 1, then C = [A;B]. If dim == 2 then C = [A B]
  102. //
  103. // Template:
  104. // Scalar scalar data type for sparse matrices like double or int
  105. // Mat matrix type for all matrices (e.g. MatrixXd, SparseMatrix)
  106. // MatC matrix type for ouput matrix (e.g. MatrixXd) needs to support
  107. // resize
  108. // Inputs:
  109. // A first input matrix
  110. // B second input matrix
  111. // dim dimension along which to concatenate, 0 or 1
  112. // Outputs:
  113. // C output matrix
  114. // )igl_Qu8mg5v7";
  115. const char *__doc_igl_collapse_edge = R"igl_Qu8mg5v7(See collapse_edge for the documentation.)igl_Qu8mg5v7";
  116. const char *__doc_igl_colon = R"igl_Qu8mg5v7(// Colon operator like matlab's colon operator. Enumerats values between low
  117. // and hi with step step.
  118. // Templates:
  119. // L should be a eigen matrix primitive type like int or double
  120. // S should be a eigen matrix primitive type like int or double
  121. // H should be a eigen matrix primitive type like int or double
  122. // T should be a eigen matrix primitive type like int or double
  123. // Inputs:
  124. // low starting value if step is valid then this is *always* the first
  125. // element of I
  126. // step step difference between sequential elements returned in I,
  127. // remember this will be cast to template T at compile time. If low<hi
  128. // then step must be positive. If low>hi then step must be negative.
  129. // Otherwise I will be set to empty.
  130. // hi ending value, if (hi-low)%step is zero then this will be the last
  131. // element in I. If step is positive there will be no elements greater
  132. // than hi, vice versa if hi<low
  133. // Output:
  134. // I list of values from low to hi with step size step)igl_Qu8mg5v7";
  135. const char *__doc_igl_comb_cross_field = R"igl_Qu8mg5v7(// Inputs:
  136. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  137. // F #F by 4 eigen Matrix of face (quad) indices
  138. // PD1in #F by 3 eigen Matrix of the first per face cross field vector
  139. // PD2in #F by 3 eigen Matrix of the second per face cross field vector
  140. // Output:
  141. // PD1out #F by 3 eigen Matrix of the first combed cross field vector
  142. // PD2out #F by 3 eigen Matrix of the second combed cross field vector
  143. //)igl_Qu8mg5v7";
  144. const char *__doc_igl_comb_frame_field = R"igl_Qu8mg5v7(// Inputs:
  145. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  146. // F #F by 4 eigen Matrix of face (quad) indices
  147. // PD1 #F by 3 eigen Matrix of the first per face cross field vector
  148. // PD2 #F by 3 eigen Matrix of the second per face cross field vector
  149. // BIS1_combed #F by 3 eigen Matrix of the first combed bisector field vector
  150. // BIS2_combed #F by 3 eigen Matrix of the second combed bisector field vector
  151. // Output:
  152. // PD1_combed #F by 3 eigen Matrix of the first combed cross field vector
  153. // PD2_combed #F by 3 eigen Matrix of the second combed cross field vector
  154. //)igl_Qu8mg5v7";
  155. const char *__doc_igl_compute_frame_field_bisectors = R"igl_Qu8mg5v7(// Compute bisectors of a frame field defined on mesh faces
  156. // Inputs:
  157. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  158. // F #F by 3 eigen Matrix of face (triangle) indices
  159. // B1 #F by 3 eigen Matrix of face (triangle) base vector 1
  160. // B2 #F by 3 eigen Matrix of face (triangle) base vector 2
  161. // PD1 #F by 3 eigen Matrix of the first per face frame field vector
  162. // PD2 #F by 3 eigen Matrix of the second per face frame field vector
  163. // Output:
  164. // BIS1 #F by 3 eigen Matrix of the first per face frame field bisector
  165. // BIS2 #F by 3 eigen Matrix of the second per face frame field bisector
  166. //)igl_Qu8mg5v7";
  167. const char *__doc_igl_copyleft_cgal_mesh_boolean = R"igl_Qu8mg5v7(// MESH_BOOLEAN Compute boolean csg operations on "solid", consistently
  168. // oriented meshes.
  169. //
  170. // Inputs:
  171. // VA #VA by 3 list of vertex positions of first mesh
  172. // FA #FA by 3 list of triangle indices into VA
  173. // VB #VB by 3 list of vertex positions of second mesh
  174. // FB #FB by 3 list of triangle indices into VB
  175. // type type of boolean operation
  176. // Outputs:
  177. // VC #VC by 3 list of vertex positions of boolean result mesh
  178. // FC #FC by 3 list of triangle indices into VC
  179. // J #FC list of indices into [FA;FA.rows()+FB] revealing "birth" facet
  180. // Returns true if inputs induce a piecewise constant winding number
  181. // field and type is valid
  182. //
  183. // See also: mesh_boolean_cork, intersect_other,
  184. // remesh_self_intersections)igl_Qu8mg5v7";
  185. const char *__doc_igl_copyleft_cgal_remesh_self_intersections = R"igl_Qu8mg5v7(// Given a triangle mesh (V,F) compute a new mesh (VV,FF) which is the same
  186. // as (V,F) except that any self-intersecting triangles in (V,F) have been
  187. // subdivided (new vertices and face created) so that the self-intersection
  188. // contour lies exactly on edges in (VV,FF). New vertices will appear in
  189. // original faces or on original edges. New vertices on edges are "merged"
  190. // only across original faces sharing that edge. This means that if the input
  191. // triangle mesh is a closed manifold the output will be too.
  192. //
  193. // Inputs:
  194. // V #V by 3 list of vertex positions
  195. // F #F by 3 list of triangle indices into V
  196. // params struct of optional parameters
  197. // Outputs:
  198. // VV #VV by 3 list of vertex positions
  199. // FF #FF by 3 list of triangle indices into VV
  200. // IF #intersecting face pairs by 2 list of intersecting face pairs,
  201. // indexing F
  202. // J #FF list of indices into F denoting birth triangle
  203. // IM #VV list of indices into VV of unique vertices.
  204. //
  205. // Known bugs: If an existing edge in (V,F) lies exactly on another face then
  206. // any resulting additional vertices along that edge may not get properly
  207. // connected so that the output mesh has the same global topology. This is
  208. // because
  209. //
  210. // Example:
  211. // // resolve intersections
  212. // igl::copyleft::cgal::remesh_self_intersections(V,F,params,VV,FF,IF,J,IM);
  213. // // _apply_ duplicate vertex mapping IM to FF
  214. // for_each(FF.data(),FF.data()+FF.size(),[&IM](int & a){a=IM(a);});
  215. // // remove any vertices now unreferenced after duplicate mapping.
  216. // igl::remove_unreferenced(VV,FF,SV,SF,UIM);
  217. // // Now (SV,SF) is ready to extract outer hull
  218. // igl::copyleft::cgal::outer_hull(SV,SF,G,J,flip);)igl_Qu8mg5v7";
  219. const char *__doc_igl_copyleft_comiso_miq = R"igl_Qu8mg5v7(// Inputs:
  220. // V #V by 3 list of mesh vertex 3D positions
  221. // F #F by 3 list of faces indices in V
  222. // PD1 #V by 3 first line of the Jacobian per triangle
  223. // PD2 #V by 3 second line of the Jacobian per triangle
  224. // (optional, if empty it will be a vector in the tangent plane orthogonal to PD1)
  225. // scale global scaling for the gradient (controls the quads resolution)
  226. // stiffness weight for the stiffness iterations
  227. // direct_round greedily round all integer variables at once (greatly improves optimization speed but lowers quality)
  228. // iter stiffness iterations (0 = no stiffness)
  229. // local_iter number of local iterations for the integer rounding
  230. // do_round enables the integer rounding (disabling it could be useful for debugging)
  231. // round_vertices id of additional vertices that should be snapped to integer coordinates
  232. // hard_features #H by 2 list of pairs of vertices that belongs to edges that should be snapped to integer coordinates
  233. //
  234. // Output:
  235. // UV #UV by 2 list of vertices in 2D
  236. // FUV #FUV by 3 list of face indices in UV
  237. //
  238. // TODO: rename the parameters name in the cpp consistenly
  239. // improve the handling of hard_features, right now it might fail in difficult cases)igl_Qu8mg5v7";
  240. const char *__doc_igl_copyleft_comiso_nrosy = R"igl_Qu8mg5v7(// Generate a N-RoSy field from a sparse set of constraints
  241. //
  242. // Inputs:
  243. // V #V by 3 list of mesh vertex coordinates
  244. // F #F by 3 list of mesh faces (must be triangles)
  245. // b #B by 1 list of constrained face indices
  246. // bc #B by 3 list of representative vectors for the constrained
  247. // faces
  248. // b_soft #S by 1 b for soft constraints
  249. // w_soft #S by 1 weight for the soft constraints (0-1)
  250. // bc_soft #S by 3 bc for soft constraints
  251. // N the degree of the N-RoSy vector field
  252. // soft the strenght of the soft contraints w.r.t. smoothness
  253. // (0 -> smoothness only, 1->constraints only)
  254. // Outputs:
  255. // R #F by 3 the representative vectors of the interpolated field
  256. // S #V by 1 the singularity index for each vertex (0 = regular))igl_Qu8mg5v7";
  257. const char *__doc_igl_copyleft_marching_cubes = R"igl_Qu8mg5v7(// marching_cubes( values, points, x_res, y_res, z_res, vertices, faces )
  258. //
  259. // performs marching cubes reconstruction on the grid defined by values, and
  260. // points, and generates vertices and faces
  261. //
  262. // Input:
  263. // values #number_of_grid_points x 1 array -- the scalar values of an
  264. // implicit function defined on the grid points (<0 in the inside of the
  265. // surface, 0 on the border, >0 outside)
  266. // points #number_of_grid_points x 3 array -- 3-D positions of the grid
  267. // points, ordered in x,y,z order:
  268. // points[index] = the point at (x,y,z) where :
  269. // x = (index % (xres -1),
  270. // y = (index / (xres-1)) %(yres-1),
  271. // z = index / (xres -1) / (yres -1) ).
  272. // where x,y,z index x, y, z dimensions
  273. // i.e. index = x + y*xres + z*xres*yres
  274. // xres resolutions of the grid in x dimension
  275. // yres resolutions of the grid in y dimension
  276. // zres resolutions of the grid in z dimension
  277. // Output:
  278. // vertices #V by 3 list of mesh vertex positions
  279. // faces #F by 3 list of mesh triangle indices
  280. //)igl_Qu8mg5v7";
  281. const char *__doc_igl_copyleft_swept_volume = R"igl_Qu8mg5v7(// Compute the surface of the swept volume of a solid object with surface
  282. // (V,F) mesh under going rigid motion.
  283. //
  284. // Inputs:
  285. // V #V by 3 list of mesh positions in reference pose
  286. // F #F by 3 list of mesh indices into V
  287. // transform function handle so that transform(t) returns the rigid
  288. // transformation at time t∈[0,1]
  289. // steps number of time steps: steps=3 --> t∈{0,0.5,1}
  290. // grid_res number of grid cells on the longest side containing the
  291. // motion (isolevel+1 cells will also be added on each side as padding)
  292. // isolevel distance level to be contoured as swept volume
  293. // Outputs:
  294. // SV #SV by 3 list of mesh positions of the swept surface
  295. // SF #SF by 3 list of mesh faces into SV)igl_Qu8mg5v7";
  296. const char *__doc_igl_copyleft_tetgen_tetrahedralize = R"igl_Qu8mg5v7(// Mesh the interior of a surface mesh (V,F) using tetgen
  297. //
  298. // Inputs:
  299. // V #V by 3 vertex position list
  300. // F #F list of polygon face indices into V (0-indexed)
  301. // switches string of tetgen options (See tetgen documentation) e.g.
  302. // "pq1.414a0.01" tries to mesh the interior of a given surface with
  303. // quality and area constraints
  304. // "" will mesh the convex hull constrained to pass through V (ignores F)
  305. // Outputs:
  306. // TV #V by 3 vertex position list
  307. // TT #T by 4 list of tet face indices
  308. // TF #F by 3 list of triangle face indices
  309. // Returns status:
  310. // 0 success
  311. // 1 tetgen threw exception
  312. // 2 tetgen did not crash but could not create any tets (probably there are
  313. // holes, duplicate faces etc.)
  314. // -1 other error)igl_Qu8mg5v7";
  315. const char *__doc_igl_cotmatrix = R"igl_Qu8mg5v7(// Constructs the cotangent stiffness matrix (discrete laplacian) for a given
  316. // mesh (V,F).
  317. //
  318. // Templates:
  319. // DerivedV derived type of eigen matrix for V (e.g. derived from
  320. // MatrixXd)
  321. // DerivedF derived type of eigen matrix for F (e.g. derived from
  322. // MatrixXi)
  323. // Scalar scalar type for eigen sparse matrix (e.g. double)
  324. // Inputs:
  325. // V #V by dim list of mesh vertex positions
  326. // F #F by simplex_size list of mesh faces (must be triangles)
  327. // Outputs:
  328. // L #V by #V cotangent matrix, each row i corresponding to V(i,:)
  329. //
  330. // See also: adjacency_matrix
  331. //
  332. // Note: This Laplacian uses the convention that diagonal entries are
  333. // **minus** the sum of off-diagonal entries. The diagonal entries are
  334. // therefore in general negative and the matrix is **negative** semi-definite
  335. // (immediately, -L is **positive** semi-definite)
  336. //
  337. // Known bugs: off by 1e-16 on regular grid. I think its a problem of
  338. // arithmetic order in cotmatrix_entries.h: C(i,e) = (arithmetic)/dblA/4)igl_Qu8mg5v7";
  339. const char *__doc_igl_covariance_scatter_matrix = R"igl_Qu8mg5v7(// Construct the covariance scatter matrix for a given arap energy
  340. // Inputs:
  341. // V #V by Vdim list of initial domain positions
  342. // F #F by 3 list of triangle indices into V
  343. // energy ARAPEnergyType enum value defining which energy is being used.
  344. // See ARAPEnergyType.h for valid options and explanations.
  345. // Outputs:
  346. // CSM dim*#V/#F by dim*#V sparse matrix containing special laplacians along
  347. // the diagonal so that when multiplied by V gives covariance matrix
  348. // elements, can be used to speed up covariance matrix computation)igl_Qu8mg5v7";
  349. const char *__doc_igl_cross_field_missmatch = R"igl_Qu8mg5v7(// Inputs:
  350. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  351. // F #F by 3 eigen Matrix of face (quad) indices
  352. // PD1 #F by 3 eigen Matrix of the first per face cross field vector
  353. // PD2 #F by 3 eigen Matrix of the second per face cross field vector
  354. // isCombed boolean, specifying whether the field is combed (i.e. matching has been precomputed.
  355. // If not, the field is combed first.
  356. // Output:
  357. // Handle_MMatch #F by 3 eigen Matrix containing the integer missmatch of the cross field
  358. // across all face edges
  359. //)igl_Qu8mg5v7";
  360. const char *__doc_igl_cut_mesh_from_singularities = R"igl_Qu8mg5v7(// Given a mesh (V,F) and the integer mismatch of a cross field per edge
  361. // (MMatch), finds the cut_graph connecting the singularities (seams) and the
  362. // degree of the singularities singularity_index
  363. //
  364. // Input:
  365. // V #V by 3 list of mesh vertex positions
  366. // F #F by 3 list of faces
  367. // MMatch #F by 3 list of per corner integer mismatch
  368. // Outputs:
  369. // seams #F by 3 list of per corner booleans that denotes if an edge is a
  370. // seam or not
  371. //)igl_Qu8mg5v7";
  372. const char *__doc_igl_doublearea = R"igl_Qu8mg5v7(// DOUBLEAREA computes twice the area for each input triangle[quad]
  373. //
  374. // Templates:
  375. // DerivedV derived type of eigen matrix for V (e.g. derived from
  376. // MatrixXd)
  377. // DerivedF derived type of eigen matrix for F (e.g. derived from
  378. // MatrixXi)
  379. // DeriveddblA derived type of eigen matrix for dblA (e.g. derived from
  380. // MatrixXd)
  381. // Inputs:
  382. // V #V by dim list of mesh vertex positions
  383. // F #F by simplex_size list of mesh faces (must be triangles or quads)
  384. // Outputs:
  385. // dblA #F list of triangle[quad] double areas (SIGNED only for 2D input)
  386. //
  387. // Known bug: For dim==3 complexity is O(#V + #F)!! Not just O(#F). This is a big deal
  388. // if you have 1million unreferenced vertices and 1 face)igl_Qu8mg5v7";
  389. const char *__doc_igl_doublearea_single = R"igl_Qu8mg5v7(// Single triangle in 2D!
  390. //
  391. // This should handle streams of corners not just single corners)igl_Qu8mg5v7";
  392. const char *__doc_igl_doublearea_quad = R"igl_Qu8mg5v7(// DOUBLEAREA_QUAD computes twice the area for each input quadrilateral
  393. //
  394. // Inputs:
  395. // V #V by dim list of mesh vertex positions
  396. // F #F by simplex_size list of mesh faces (must be quadrilaterals)
  397. // Outputs:
  398. // dblA #F list of quadrilateral double areas
  399. //)igl_Qu8mg5v7";
  400. const char *__doc_igl_edge_lengths = R"igl_Qu8mg5v7(// Constructs a list of lengths of edges opposite each index in a face
  401. // (triangle/tet) list
  402. //
  403. // Templates:
  404. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  405. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  406. // DerivedL derived from edge lengths matrix type: i.e. MatrixXd
  407. // Inputs:
  408. // V eigen matrix #V by 3
  409. // F #F by 2 list of mesh edges
  410. // or
  411. // F #F by 3 list of mesh faces (must be triangles)
  412. // or
  413. // T #T by 4 list of mesh elements (must be tets)
  414. // Outputs:
  415. // L #F by {1|3|6} list of edge lengths
  416. // for edges, column of lengths
  417. // for triangles, columns correspond to edges [1,2],[2,0],[0,1]
  418. // for tets, columns correspond to edges
  419. // [3 0],[3 1],[3 2],[1 2],[2 0],[0 1]
  420. //)igl_Qu8mg5v7";
  421. const char *__doc_igl_edge_topology = R"igl_Qu8mg5v7(// Initialize Edges and their topological relations
  422. //
  423. // Output:
  424. // EV : #Ex2, Stores the edge description as pair of indices to vertices
  425. // FE : #Fx3, Stores the Triangle-Edge relation
  426. // EF : #Ex2: Stores the Edge-Triangle relation
  427. //)igl_Qu8mg5v7";
  428. const char *__doc_igl_eigs = R"igl_Qu8mg5v7(See eigs for the documentation.)igl_Qu8mg5v7";
  429. const char *__doc_igl_embree_ambient_occlusion = R"igl_Qu8mg5v7(// Compute ambient occlusion per given point
  430. //
  431. // Inputs:
  432. // ei EmbreeIntersector containing (V,F)
  433. // P #P by 3 list of origin points
  434. // N #P by 3 list of origin normals
  435. // Outputs:
  436. // S #P list of ambient occlusion values between 1 (fully occluded) and
  437. // 0 (not occluded)
  438. //)igl_Qu8mg5v7";
  439. const char *__doc_igl_embree_reorient_facets_raycast = R"igl_Qu8mg5v7(// Orient each component (identified by C) of a mesh (V,F) using ambient
  440. // occlusion such that the front side is less occluded than back side, as
  441. // described in "A Simple Method for Correcting Facet Orientations in
  442. // Polygon Meshes Based on Ray Casting" [Takayama et al. 2014].
  443. //
  444. // Inputs:
  445. // V #V by 3 list of vertex positions
  446. // F #F by 3 list of triangle indices
  447. // rays_total Total number of rays that will be shot
  448. // rays_minimum Minimum number of rays that each patch should receive
  449. // facet_wise Decision made for each face independently, no use of patches
  450. // (i.e., each face is treated as a patch)
  451. // use_parity Use parity mode
  452. // is_verbose Verbose output to cout
  453. // Outputs:
  454. // I #F list of whether face has been flipped
  455. // C #F list of patch ID (output of bfs_orient > manifold patches))igl_Qu8mg5v7";
  456. const char *__doc_igl_embree_line_mesh_intersection = R"igl_Qu8mg5v7(// Project the point cloud V_source onto the triangle mesh
  457. // V_target,F_target.
  458. // A ray is casted for every vertex in the direction specified by
  459. // N_source and its opposite.
  460. //
  461. // Input:
  462. // V_source: #Vx3 Vertices of the source mesh
  463. // N_source: #Vx3 Normals of the point cloud
  464. // V_target: #V2x3 Vertices of the target mesh
  465. // F_target: #F2x3 Faces of the target mesh
  466. //
  467. // Output:
  468. // #Vx3 matrix of baricentric coordinate. Each row corresponds to
  469. // a vertex of the projected mesh and it has the following format:
  470. // id b1 b2. id is the id of a face of the source mesh. b1 and b2 are
  471. // the barycentric coordinates wrt the first two edges of the triangle
  472. // To convert to standard global coordinates, see barycentric_to_global.h)igl_Qu8mg5v7";
  473. const char *__doc_igl_find_cross_field_singularities = R"igl_Qu8mg5v7(// Inputs:
  474. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  475. // F #F by 3 eigen Matrix of face (quad) indices
  476. // Handle_MMatch #F by 3 eigen Matrix containing the integer missmatch of the cross field
  477. // across all face edges
  478. // Output:
  479. // isSingularity #V by 1 boolean eigen Vector indicating the presence of a singularity on a vertex
  480. // singularityIndex #V by 1 integer eigen Vector containing the singularity indices
  481. //)igl_Qu8mg5v7";
  482. const char *__doc_igl_fit_rotations = R"igl_Qu8mg5v7(// Known issues: This seems to be implemented in Eigen/Geometry:
  483. // Eigen::umeyama
  484. //
  485. // FIT_ROTATIONS Given an input mesh and new positions find rotations for
  486. // every covariance matrix in a stack of covariance matrices
  487. //
  488. // Inputs:
  489. // S nr*dim by dim stack of covariance matrices
  490. // single_precision whether to use single precision (faster)
  491. // Outputs:
  492. // R dim by dim * nr list of rotations
  493. //)igl_Qu8mg5v7";
  494. const char *__doc_igl_fit_rotations_planar = R"igl_Qu8mg5v7(// FIT_ROTATIONS Given an input mesh and new positions find 2D rotations for
  495. // every vertex that best maps its one ring to the new one ring
  496. //
  497. // Inputs:
  498. // S nr*dim by dim stack of covariance matrices, third column and every
  499. // third row will be ignored
  500. // Outputs:
  501. // R dim by dim * nr list of rotations, third row and third column of each
  502. // rotation will just be identity
  503. //)igl_Qu8mg5v7";
  504. const char *__doc_igl_fit_rotations_SSE = R"igl_Qu8mg5v7(See fit_rotations_SSE for the documentation.)igl_Qu8mg5v7";
  505. const char *__doc_igl_floor = R"igl_Qu8mg5v7(// Floor a given matrix to nearest integers
  506. //
  507. // Inputs:
  508. // X m by n matrix of scalars
  509. // Outputs:
  510. // Y m by n matrix of floored integers)igl_Qu8mg5v7";
  511. const char *__doc_igl_gaussian_curvature = R"igl_Qu8mg5v7(// Compute discrete local integral gaussian curvature (angle deficit, without
  512. // averaging by local area).
  513. //
  514. // Inputs:
  515. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  516. // F #F by 3 eigen Matrix of face (triangle) indices
  517. // Output:
  518. // K #V by 1 eigen Matrix of discrete gaussian curvature values
  519. //)igl_Qu8mg5v7";
  520. const char *__doc_igl_get_seconds = R"igl_Qu8mg5v7(// Return the current time in seconds since program start
  521. //
  522. // Example:
  523. // const auto & tictoc = []()
  524. // {
  525. // static double t_start = igl::get_seconds();
  526. // double diff = igl::get_seconds()-t_start;
  527. // t_start += diff;
  528. // return diff;
  529. // };
  530. // tictoc();
  531. // ... // part 1
  532. // cout<<"part 1: "<<tictoc()<<endl;
  533. // ... // part 2
  534. // cout<<"part 2: "<<tictoc()<<endl;
  535. // ... // etc)igl_Qu8mg5v7";
  536. const char *__doc_igl_grad = R"igl_Qu8mg5v7(// Gradient of a scalar function defined on piecewise linear elements (mesh)
  537. // is constant on each triangle i,j,k:
  538. // grad(Xijk) = (Xj-Xi) * (Vi - Vk)^R90 / 2A + (Xk-Xi) * (Vj - Vi)^R90 / 2A
  539. // where Xi is the scalar value at vertex i, Vi is the 3D position of vertex
  540. // i, and A is the area of triangle (i,j,k). ^R90 represent a rotation of
  541. // 90 degrees
  542. //)igl_Qu8mg5v7";
  543. const char *__doc_igl_harmonic = R"igl_Qu8mg5v7(// Compute k-harmonic weight functions "coordinates".
  544. //
  545. //
  546. // Inputs:
  547. // V #V by dim vertex positions
  548. // F #F by simplex-size list of element indices
  549. // b #b boundary indices into V
  550. // bc #b by #W list of boundary values
  551. // k power of harmonic operation (1: harmonic, 2: biharmonic, etc)
  552. // Outputs:
  553. // W #V by #W list of weights
  554. //)igl_Qu8mg5v7";
  555. const char *__doc_igl_hsv_to_rgb = R"igl_Qu8mg5v7(// Convert RGB to HSV
  556. //
  557. // Inputs:
  558. // h hue value (degrees: [0,360])
  559. // s saturation value ([0,1])
  560. // v value value ([0,1])
  561. // Outputs:
  562. // r red value ([0,1])
  563. // g green value ([0,1])
  564. // b blue value ([0,1]))igl_Qu8mg5v7";
  565. const char *__doc_igl_internal_angles = R"igl_Qu8mg5v7(// Compute internal angles for a triangle mesh
  566. //
  567. // Inputs:
  568. // V #V by dim eigen Matrix of mesh vertex nD positions
  569. // F #F by poly-size eigen Matrix of face (triangle) indices
  570. // Output:
  571. // K #F by poly-size eigen Matrix of internal angles
  572. // for triangles, columns correspond to edges [1,2],[2,0],[0,1]
  573. //
  574. // Known Issues:
  575. // if poly-size ≠ 3 then dim must equal 3.)igl_Qu8mg5v7";
  576. const char *__doc_igl_invert_diag = R"igl_Qu8mg5v7(// Templates:
  577. // T should be a eigen sparse matrix primitive type like int or double
  578. // Inputs:
  579. // X an m by n sparse matrix
  580. // Outputs:
  581. // Y an m by n sparse matrix)igl_Qu8mg5v7";
  582. const char *__doc_igl_is_irregular_vertex = R"igl_Qu8mg5v7(// Determine if a vertex is irregular, i.e. it has more than 6 (triangles)
  583. // or 4 (quads) incident edges. Vertices on the boundary are ignored.
  584. //
  585. // Inputs:
  586. // V #V by dim list of vertex positions
  587. // F #F by 3[4] list of triangle[quads] indices
  588. // Returns #V vector of bools revealing whether vertices are singular
  589. //)igl_Qu8mg5v7";
  590. const char *__doc_igl_jet = R"igl_Qu8mg5v7(// JET like MATLAB's jet
  591. //
  592. // Inputs:
  593. // m number of colors
  594. // Outputs:
  595. // J m by list of RGB colors between 0 and 1
  596. //
  597. //#ifndef IGL_NO_EIGEN
  598. // void jet(const int m, Eigen::MatrixXd & J);
  599. //#endif
  600. // Wrapper for directly computing [r,g,b] values for a given factor f between
  601. // 0 and 1
  602. //
  603. // Inputs:
  604. // f factor determining color value as if 0 was min and 1 was max
  605. // Outputs:
  606. // r red value
  607. // g green value
  608. // b blue value)igl_Qu8mg5v7";
  609. const char *__doc_igl_local_basis = R"igl_Qu8mg5v7(// Compute a local orthogonal reference system for each triangle in the given mesh
  610. // Templates:
  611. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  612. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  613. // Inputs:
  614. // V eigen matrix #V by 3
  615. // F #F by 3 list of mesh faces (must be triangles)
  616. // Outputs:
  617. // B1 eigen matrix #F by 3, each vector is tangent to the triangle
  618. // B2 eigen matrix #F by 3, each vector is tangent to the triangle and perpendicular to B1
  619. // B3 eigen matrix #F by 3, normal of the triangle
  620. //
  621. // See also: adjacency_matrix)igl_Qu8mg5v7";
  622. const char *__doc_igl_lscm = R"igl_Qu8mg5v7(// Compute a Least-squares conformal map parametrization (equivalently
  623. // derived in "Intrinsic Parameterizations of Surface Meshes" [Desbrun et al.
  624. // 2002] and "Least Squares Conformal Maps for Automatic Texture Atlas
  625. // Generation" [Lévy et al. 2002]), though this implementation follows the
  626. // derivation in: "Spectral Conformal Parameterization" [Mullen et al. 2008]
  627. // (note, this does **not** implement the Eigen-decomposition based method in
  628. // [Mullen et al. 2008], which is not equivalent). Input should be a manifold
  629. // mesh (also no unreferenced vertices) and "boundary" (fixed vertices) `b`
  630. // should contain at least two vertices per connected component.
  631. //
  632. // Inputs:
  633. // V #V by 3 list of mesh vertex positions
  634. // F #F by 3 list of mesh faces (must be triangles)
  635. // b #b boundary indices into V
  636. // bc #b by 3 list of boundary values
  637. // Outputs:
  638. // UV #V by 2 list of 2D mesh vertex positions in UV space
  639. // Returns true only on solver success.
  640. //)igl_Qu8mg5v7";
  641. const char *__doc_igl_map_vertices_to_circle = R"igl_Qu8mg5v7(// Map the vertices whose indices are in a given boundary loop (bnd) on the
  642. // unit circle with spacing proportional to the original boundary edge
  643. // lengths.
  644. //
  645. // Inputs:
  646. // V #V by dim list of mesh vertex positions
  647. // b #W list of vertex ids
  648. // Outputs:
  649. // UV #W by 2 list of 2D position on the unit circle for the vertices in b)igl_Qu8mg5v7";
  650. const char *__doc_igl_massmatrix = R"igl_Qu8mg5v7(// Constructs the mass (area) matrix for a given mesh (V,F).
  651. //
  652. // Templates:
  653. // DerivedV derived type of eigen matrix for V (e.g. derived from
  654. // MatrixXd)
  655. // DerivedF derived type of eigen matrix for F (e.g. derived from
  656. // MatrixXi)
  657. // Scalar scalar type for eigen sparse matrix (e.g. double)
  658. // Inputs:
  659. // V #V by dim list of mesh vertex positions
  660. // F #F by simplex_size list of mesh faces (must be triangles)
  661. // type one of the following ints:
  662. // MASSMATRIX_TYPE_BARYCENTRIC barycentric
  663. // MASSMATRIX_TYPE_VORONOI voronoi-hybrid {default}
  664. // MASSMATRIX_TYPE_FULL full {not implemented}
  665. // Outputs:
  666. // M #V by #V mass matrix
  667. //
  668. // See also: adjacency_matrix
  669. //)igl_Qu8mg5v7";
  670. const char *__doc_igl_min_quad_with_fixed_precompute = R"igl_Qu8mg5v7(// Known Bugs: rows of Aeq **should probably** be linearly independent.
  671. // During precomputation, the rows of a Aeq are checked via QR. But in case
  672. // they're not then resulting probably will no longer be sparse: it will be
  673. // slow.
  674. //
  675. // MIN_QUAD_WITH_FIXED Minimize quadratic energy
  676. //
  677. // 0.5*Z'*A*Z + Z'*B + C with
  678. //
  679. // constraints that Z(known) = Y, optionally also subject to the constraints
  680. // Aeq*Z = Beq
  681. //
  682. // Templates:
  683. // T should be a eigen matrix primitive type like int or double
  684. // Inputs:
  685. // A n by n matrix of quadratic coefficients
  686. // known list of indices to known rows in Z
  687. // Y list of fixed values corresponding to known rows in Z
  688. // Aeq m by n list of linear equality constraint coefficients
  689. // pd flag specifying whether A(unknown,unknown) is positive definite
  690. // Outputs:
  691. // data factorization struct with all necessary information to solve
  692. // using min_quad_with_fixed_solve
  693. // Returns true on success, false on error
  694. //
  695. // Benchmark: For a harmonic solve on a mesh with 325K facets, matlab 2.2
  696. // secs, igl/min_quad_with_fixed.h 7.1 secs
  697. //)igl_Qu8mg5v7";
  698. const char *__doc_igl_min_quad_with_fixed_solve = R"igl_Qu8mg5v7(// Solves a system previously factored using min_quad_with_fixed_precompute
  699. //
  700. // Template:
  701. // T type of sparse matrix (e.g. double)
  702. // DerivedY type of Y (e.g. derived from VectorXd or MatrixXd)
  703. // DerivedZ type of Z (e.g. derived from VectorXd or MatrixXd)
  704. // Inputs:
  705. // data factorization struct with all necessary precomputation to solve
  706. // B n by 1 column of linear coefficients
  707. // Y b by 1 list of constant fixed values
  708. // Beq m by 1 list of linear equality constraint constant values
  709. // Outputs:
  710. // Z n by cols solution
  711. // sol #unknowns+#lagrange by cols solution to linear system
  712. // Returns true on success, false on error)igl_Qu8mg5v7";
  713. const char *__doc_igl_min_quad_with_fixed = R"igl_Qu8mg5v7(See min_quad_with_fixed for the documentation.)igl_Qu8mg5v7";
  714. const char *__doc_igl_n_polyvector = R"igl_Qu8mg5v7(// Inputs:
  715. // v0, v1 the two #3 by 1 vectors
  716. // normalized boolean, if false, then the vectors are normalized prior to the calculation
  717. // Output:
  718. // 3 by 3 rotation matrix that takes v0 to v1
  719. //)igl_Qu8mg5v7";
  720. const char *__doc_igl_parula = R"igl_Qu8mg5v7(// PARULA like MATLAB's parula
  721. //
  722. // Inputs:
  723. // m number of colors
  724. // Outputs:
  725. // J m by list of RGB colors between 0 and 1
  726. //
  727. // Wrapper for directly computing [r,g,b] values for a given factor f between
  728. // 0 and 1
  729. //
  730. // Inputs:
  731. // f factor determining color value as if 0 was min and 1 was max
  732. // Outputs:
  733. // r red value
  734. // g green value
  735. // b blue value)igl_Qu8mg5v7";
  736. const char *__doc_igl_per_corner_normals = R"igl_Qu8mg5v7(// Compute vertex normals via vertex position list, face list
  737. // Inputs:
  738. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  739. // F #F by 3 eigne Matrix of face (triangle) indices
  740. // corner_threshold threshold in degrees on sharp angles
  741. // Output:
  742. // CN #F*3 by 3 eigen Matrix of mesh vertex 3D normals, where the normal
  743. // for corner F(i,j) is at CN(i*3+j,:) )igl_Qu8mg5v7";
  744. const char *__doc_igl_per_edge_normals = R"igl_Qu8mg5v7(// Compute face normals via vertex position list, face list
  745. // Inputs:
  746. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  747. // F #F by 3 eigen Matrix of face (triangle) indices
  748. // weight weighting type
  749. // FN #F by 3 matrix of 3D face normals per face
  750. // Output:
  751. // N #2 by 3 matrix of mesh edge 3D normals per row
  752. // E #E by 2 matrix of edge indices per row
  753. // EMAP #E by 1 matrix of indices from all edges to E
  754. //)igl_Qu8mg5v7";
  755. const char *__doc_igl_per_face_normals = R"igl_Qu8mg5v7(// Compute face normals via vertex position list, face list
  756. // Inputs:
  757. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  758. // F #F by 3 eigen Matrix of face (triangle) indices
  759. // Z 3 vector normal given to faces with degenerate normal.
  760. // Output:
  761. // N #F by 3 eigen Matrix of mesh face (triangle) 3D normals
  762. //
  763. // Example:
  764. // // Give degenerate faces (1/3,1/3,1/3)^0.5
  765. // per_face_normals(V,F,Vector3d(1,1,1).normalized(),N);)igl_Qu8mg5v7";
  766. const char *__doc_igl_per_face_normals_stable = R"igl_Qu8mg5v7(// Special version where order of face indices is guaranteed not to effect
  767. // output.)igl_Qu8mg5v7";
  768. const char *__doc_igl_per_vertex_normals = R"igl_Qu8mg5v7(// Compute vertex normals via vertex position list, face list
  769. // Inputs:
  770. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  771. // F #F by 3 eigne Matrix of face (triangle) indices
  772. // weighting Weighting type
  773. // Output:
  774. // N #V by 3 eigen Matrix of mesh vertex 3D normals)igl_Qu8mg5v7";
  775. const char *__doc_igl_planarize_quad_mesh = R"igl_Qu8mg5v7(// Inputs:
  776. // Vin #V by 3 eigen Matrix of mesh vertex 3D positions
  777. // F #F by 4 eigen Matrix of face (quad) indices
  778. // maxIter maximum numbers of iterations
  779. // threshold minimum allowed threshold for non-planarity
  780. // Output:
  781. // Vout #V by 3 eigen Matrix of planar mesh vertex 3D positions
  782. //)igl_Qu8mg5v7";
  783. const char *__doc_igl_png_readPNG = R"igl_Qu8mg5v7(// Read an image from a .png file into 4 memory buffers
  784. //
  785. // Input:
  786. // png_file path to .png file
  787. // Output:
  788. // R,G,B,A texture channels
  789. // Returns true on success, false on failure
  790. //)igl_Qu8mg5v7";
  791. const char *__doc_igl_png_writePNG = R"igl_Qu8mg5v7(// Writes an image to a png file
  792. //
  793. // Input:
  794. // R,G,B,A texture channels
  795. // Output:
  796. // png_file path to .png file
  797. // Returns true on success, false on failure
  798. //)igl_Qu8mg5v7";
  799. const char *__doc_igl_point_mesh_squared_distance = R"igl_Qu8mg5v7(// Compute distances from a set of points P to a triangle mesh (V,F)
  800. //
  801. // Inputs:
  802. // P #P by 3 list of query point positions
  803. // V #V by 3 list of vertex positions
  804. // Ele #Ele by (3|2|1) list of (triangle|edge|point) indices
  805. // Outputs:
  806. // sqrD #P list of smallest squared distances
  807. // I #P list of primitive indices corresponding to smallest distances
  808. // C #P by 3 list of closest points
  809. //
  810. // Known bugs: This only computes distances to given primitivess. So
  811. // unreferenced vertices are ignored. However, degenerate primitives are
  812. // handled correctly: triangle [1 2 2] is treated as a segment [1 2], and
  813. // triangle [1 1 1] is treated as a point. So one _could_ add extra
  814. // combinatorially degenerate rows to Ele for all unreferenced vertices to
  815. // also get distances to points.)igl_Qu8mg5v7";
  816. const char *__doc_igl_polar_svd = R"igl_Qu8mg5v7(// Computes the polar decomposition (R,T) of a matrix A using SVD singular
  817. // value decomposition
  818. //
  819. // Inputs:
  820. // A 3 by 3 matrix to be decomposed
  821. // Outputs:
  822. // R 3 by 3 rotation matrix part of decomposition (**always rotataion**)
  823. // T 3 by 3 stretch matrix part of decomposition
  824. // U 3 by 3 left-singular vectors
  825. // S 3 by 1 singular values
  826. // V 3 by 3 right-singular vectors
  827. //
  828. //)igl_Qu8mg5v7";
  829. const char *__doc_igl_principal_curvature = R"igl_Qu8mg5v7(// Compute the principal curvature directions and magnitude of the given triangle mesh
  830. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  831. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  832. // Inputs:
  833. // V eigen matrix #V by 3
  834. // F #F by 3 list of mesh faces (must be triangles)
  835. // radius controls the size of the neighbourhood used, 1 = average edge lenght
  836. //
  837. // Outputs:
  838. // PD1 #V by 3 maximal curvature direction for each vertex.
  839. // PD2 #V by 3 minimal curvature direction for each vertex.
  840. // PV1 #V by 1 maximal curvature value for each vertex.
  841. // PV2 #V by 1 minimal curvature value for each vertex.
  842. //
  843. // See also: average_onto_faces, average_onto_vertices
  844. //
  845. // This function has been developed by: Nikolas De Giorgis, Luigi Rocca and Enrico Puppo.
  846. // The algorithm is based on:
  847. // Efficient Multi-scale Curvature and Crease Estimation
  848. // Daniele Panozzo, Enrico Puppo, Luigi Rocca
  849. // GraVisMa, 2010)igl_Qu8mg5v7";
  850. const char *__doc_igl_quad_planarity = R"igl_Qu8mg5v7(// Compute planarity of the faces of a quad mesh
  851. // Inputs:
  852. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  853. // F #F by 4 eigen Matrix of face (quad) indices
  854. // Output:
  855. // P #F by 1 eigen Matrix of mesh face (quad) planarities
  856. //)igl_Qu8mg5v7";
  857. const char *__doc_igl_randperm = R"igl_Qu8mg5v7(// Like matlab's randperm(n) but minus 1
  858. //
  859. // Inputs:
  860. // n number of elements
  861. // Outputs:
  862. // I n list of rand permutation of 0:n-1)igl_Qu8mg5v7";
  863. const char *__doc_igl_readDMAT = R"igl_Qu8mg5v7(See readDMAT for the documentation.)igl_Qu8mg5v7";
  864. const char *__doc_igl_readMESH = R"igl_Qu8mg5v7(// load a tetrahedral volume mesh from a .mesh file
  865. //
  866. // Templates:
  867. // Scalar type for positions and vectors (will be read as double and cast
  868. // to Scalar)
  869. // Index type for indices (will be read as int and cast to Index)
  870. // Input:
  871. // mesh_file_name path of .mesh file
  872. // Outputs:
  873. // V double matrix of vertex positions #V by 3
  874. // T #T list of tet indices into vertex positions
  875. // F #F list of face indices into vertex positions
  876. //
  877. // Known bugs: Holes and regions are not supported)igl_Qu8mg5v7";
  878. const char *__doc_igl_readOBJ = R"igl_Qu8mg5v7(// Read a mesh from an ascii obj file, filling in vertex positions, normals
  879. // and texture coordinates. Mesh may have faces of any number of degree
  880. //
  881. // Templates:
  882. // Scalar type for positions and vectors (will be read as double and cast
  883. // to Scalar)
  884. // Index type for indices (will be read as int and cast to Index)
  885. // Inputs:
  886. // str path to .obj file
  887. // Outputs:
  888. // V double matrix of vertex positions #V by 3
  889. // TC double matrix of texture coordinats #TC by 2
  890. // N double matrix of corner normals #N by 3
  891. // F #F list of face indices into vertex positions
  892. // FTC #F list of face indices into vertex texture coordinates
  893. // FN #F list of face indices into vertex normals
  894. // Returns true on success, false on errors)igl_Qu8mg5v7";
  895. const char *__doc_igl_readOFF = R"igl_Qu8mg5v7(// Read a mesh from an ascii obj file, filling in vertex positions, normals
  896. // and texture coordinates. Mesh may have faces of any number of degree
  897. //
  898. // Templates:
  899. // Scalar type for positions and vectors (will be read as double and cast
  900. // to Scalar)
  901. // Index type for indices (will be read as int and cast to Index)
  902. // Inputs:
  903. // str path to .obj file
  904. // Outputs:
  905. // V double matrix of vertex positions #V by 3
  906. // F #F list of face indices into vertex positions
  907. // TC double matrix of texture coordinats #TC by 2
  908. // FTC #F list of face indices into vertex texture coordinates
  909. // N double matrix of corner normals #N by 3
  910. // FN #F list of face indices into vertex normals
  911. // Returns true on success, false on errors)igl_Qu8mg5v7";
  912. const char *__doc_igl_read_triangle_mesh = R"igl_Qu8mg5v7(// read mesh from an ascii file with automatic detection of file format.
  913. // supported: obj, off, stl, wrl, ply, mesh)
  914. //
  915. // Templates:
  916. // Scalar type for positions and vectors (will be read as double and cast
  917. // to Scalar)
  918. // Index type for indices (will be read as int and cast to Index)
  919. // Inputs:
  920. // str path to file
  921. // Outputs:
  922. // V eigen double matrix #V by 3
  923. // F eigen int matrix #F by 3
  924. // Returns true iff success)igl_Qu8mg5v7";
  925. const char *__doc_igl_remove_duplicate_vertices = R"igl_Qu8mg5v7( // REMOVE_DUPLICATE_VERTICES Remove duplicate vertices upto a uniqueness
  926. // tolerance (epsilon)
  927. //
  928. // Inputs:
  929. // V #V by dim list of vertex positions
  930. // epsilon uniqueness tolerance (significant digit), can probably think of
  931. // this as a tolerance on L1 distance
  932. // Outputs:
  933. // SV #SV by dim new list of vertex positions
  934. // SVI #V by 1 list of indices so SV = V(SVI,:)
  935. // SVJ #SV by 1 list of indices so V = SV(SVJ,:)
  936. //
  937. // Example:
  938. // % Mesh in (V,F)
  939. // [SV,SVI,SVJ] = remove_duplicate_vertices(V,1e-7);
  940. // % remap faces
  941. // SF = SVJ(F);
  942. //
  943. //)igl_Qu8mg5v7";
  944. const char *__doc_igl_rotate_vectors = R"igl_Qu8mg5v7(// Rotate the vectors V by A radiants on the tangent plane spanned by B1 and
  945. // B2
  946. //
  947. // Inputs:
  948. // V #V by 3 eigen Matrix of vectors
  949. // A #V eigen vector of rotation angles or a single angle to be applied
  950. // to all vectors
  951. // B1 #V by 3 eigen Matrix of base vector 1
  952. // B2 #V by 3 eigen Matrix of base vector 2
  953. //
  954. // Output:
  955. // Returns the rotated vectors
  956. //)igl_Qu8mg5v7";
  957. const char *__doc_igl_setdiff = R"igl_Qu8mg5v7(// Set difference of elements of matrices
  958. //
  959. // Inputs:
  960. // A m-long vector of indices
  961. // B n-long vector of indices
  962. // Outputs:
  963. // C (k<=m)-long vector of unique elements appearing in A but not in B
  964. // IA (k<=m)-long list of indices into A so that C = A(IA)
  965. //)igl_Qu8mg5v7";
  966. const char *__doc_igl_signed_distance = R"igl_Qu8mg5v7(// Computes signed distance to a mesh
  967. //
  968. // Inputs:
  969. // P #P by 3 list of query point positions
  970. // V #V by 3 list of vertex positions
  971. // F #F by ss list of triangle indices, ss should be 3 unless sign_type ==
  972. // SIGNED_DISTANCE_TYPE_UNSIGNED
  973. // sign_type method for computing distance _sign_ S
  974. // Outputs:
  975. // S #P list of smallest signed distances
  976. // I #P list of facet indices corresponding to smallest distances
  977. // C #P by 3 list of closest points
  978. // N #P by 3 list of closest normals (only set if
  979. // sign_type=SIGNED_DISTANCE_TYPE_PSEUDONORMAL)
  980. //
  981. // Known bugs: This only computes distances to triangles. So unreferenced
  982. // vertices and degenerate triangles are ignored.)igl_Qu8mg5v7";
  983. const char *__doc_igl_signed_distance_pseudonormal = R"igl_Qu8mg5v7(// Computes signed distance to mesh
  984. //
  985. // Inputs:
  986. // tree AABB acceleration tree (see AABB.h)
  987. // F #F by 3 list of triangle indices
  988. // FN #F by 3 list of triangle normals
  989. // VN #V by 3 list of vertex normals (ANGLE WEIGHTING)
  990. // EN #E by 3 list of edge normals (UNIFORM WEIGHTING)
  991. // EMAP #F*3 mapping edges in F to E
  992. // q Query point
  993. // Returns signed distance to mesh
  994. //)igl_Qu8mg5v7";
  995. const char *__doc_igl_signed_distance_winding_number = R"igl_Qu8mg5v7(// Inputs:
  996. // tree AABB acceleration tree (see cgal/point_mesh_squared_distance.h)
  997. // hier Winding number evaluation hierarchy
  998. // q Query point
  999. // Returns signed distance to mesh)igl_Qu8mg5v7";
  1000. const char *__doc_igl_slice = R"igl_Qu8mg5v7(// Act like the matlab X(row_indices,col_indices) operator, where
  1001. // row_indices, col_indices are non-negative integer indices.
  1002. //
  1003. // Inputs:
  1004. // X m by n matrix
  1005. // R list of row indices
  1006. // C list of column indices
  1007. // Output:
  1008. // Y #R by #C matrix
  1009. //
  1010. // See also: slice_mask)igl_Qu8mg5v7";
  1011. const char *__doc_igl_slice_into = R"igl_Qu8mg5v7(// Act like the matlab Y(row_indices,col_indices) = X
  1012. //
  1013. // Inputs:
  1014. // X xm by xn rhs matrix
  1015. // R list of row indices
  1016. // C list of column indices
  1017. // Y ym by yn lhs matrix
  1018. // Output:
  1019. // Y ym by yn lhs matrix, same as input but Y(R,C) = X)igl_Qu8mg5v7";
  1020. const char *__doc_igl_slice_mask = R"igl_Qu8mg5v7(// Act like the matlab X(row_mask,col_mask) operator, where
  1021. // row_mask, col_mask are non-negative integer indices.
  1022. //
  1023. // Inputs:
  1024. // X m by n matrix
  1025. // R m list of row bools
  1026. // C n list of column bools
  1027. // Output:
  1028. // Y #trues-in-R by #trues-in-C matrix
  1029. //
  1030. // See also: slice_mask)igl_Qu8mg5v7";
  1031. const char *__doc_igl_slice_tets = R"igl_Qu8mg5v7(// SLICE_TETS Slice through a tet mesh (V,T) along a given plane (via its
  1032. // implicit equation).
  1033. //
  1034. // Inputs:
  1035. // V #V by 3 list of tet mesh vertices
  1036. // T #T by 4 list of tet indices into V
  1037. // plane list of 4 coefficients in the plane equation: [x y z 1]'*plane = 0
  1038. // Optional:
  1039. // 'Manifold' followed by whether to stitch together triangles into a
  1040. // manifold mesh {true}: results in more compact U but slightly slower.
  1041. // Outputs:
  1042. // U #U by 3 list of triangle mesh vertices along slice
  1043. // G #G by 3 list of triangles indices into U
  1044. // J #G list of indices into T revealing from which tet each faces comes
  1045. // BC #U by #V list of barycentric coordinates (or more generally: linear
  1046. // interpolation coordinates) so that U = BC*V
  1047. // )igl_Qu8mg5v7";
  1048. const char *__doc_igl_sortrows = R"igl_Qu8mg5v7(// Act like matlab's [Y,I] = sortrows(X)
  1049. //
  1050. // Templates:
  1051. // DerivedX derived scalar type, e.g. MatrixXi or MatrixXd
  1052. // DerivedI derived integer type, e.g. MatrixXi
  1053. // Inputs:
  1054. // X m by n matrix whose entries are to be sorted
  1055. // ascending sort ascending (true, matlab default) or descending (false)
  1056. // Outputs:
  1057. // Y m by n matrix whose entries are sorted (**should not** be same
  1058. // reference as X)
  1059. // I m list of indices so that
  1060. // Y = X(I,:);)igl_Qu8mg5v7";
  1061. const char *__doc_igl_streamlines_init = R"igl_Qu8mg5v7( // Given a mesh and a field the function computes the /data/ necessary for tracing the field'
  1062. // streamlines, and creates the initial /state/ for the tracing.
  1063. // Inputs:
  1064. // V #V by 3 list of mesh vertex coordinates
  1065. // F #F by 3 list of mesh faces
  1066. // temp_field #F by 3n list of the 3D coordinates of the per-face vectors
  1067. // (n-degrees stacked horizontally for each triangle)
  1068. // treat_as_symmetric
  1069. // if true, adds n symmetry directions to the field (N = 2n). Else N = n
  1070. // percentage [0-1] percentage of faces sampled
  1071. // Outputs:
  1072. // data struct containing topology information of the mesh and field
  1073. // state struct containing the state of the tracing )igl_Qu8mg5v7";
  1074. const char *__doc_igl_streamlines_next = R"igl_Qu8mg5v7( // The function computes the next state for each point in the sample
  1075. // V #V by 3 list of mesh vertex coordinates
  1076. // F #F by 3 list of mesh faces
  1077. // data struct containing topology information
  1078. // state struct containing the state of the tracing )igl_Qu8mg5v7";
  1079. const char *__doc_igl_triangle_triangle_adjacency = R"igl_Qu8mg5v7(// Constructs the triangle-triangle adjacency matrix for a given
  1080. // mesh (V,F).
  1081. //
  1082. // Templates:
  1083. // Scalar derived type of eigen matrix for V (e.g. derived from
  1084. // MatrixXd)
  1085. // Index derived type of eigen matrix for F (e.g. derived from
  1086. // MatrixXi)
  1087. // Inputs:
  1088. // F #F by simplex_size list of mesh faces (must be triangles)
  1089. // Outputs:
  1090. // TT #F by #3 adjacent matrix, the element i,j is the id of the triangle adjacent to the j edge of triangle i
  1091. // TTi #F by #3 adjacent matrix, the element i,j is the id of edge of the triangle TT(i,j) that is adjacent with triangle i
  1092. // NOTE: the first edge of a triangle is [0,1] the second [1,2] and the third [2,3].
  1093. // this convention is DIFFERENT from cotmatrix_entries.h
  1094. // Known bug: this should not need to take V as input.)igl_Qu8mg5v7";
  1095. const char *__doc_igl_triangle_triangulate = R"igl_Qu8mg5v7(// Triangulate the interior of a polygon using the triangle library.
  1096. //
  1097. // Inputs:
  1098. // V #V by 2 list of 2D vertex positions
  1099. // E #E by 2 list of vertex ids forming unoriented edges of the boundary of the polygon
  1100. // H #H by 2 coordinates of points contained inside holes of the polygon
  1101. // flags string of options pass to triangle (see triangle documentation)
  1102. // Outputs:
  1103. // V2 #V2 by 2 coordinates of the vertives of the generated triangulation
  1104. // F2 #F2 by 3 list of indices forming the faces of the generated triangulation
  1105. //
  1106. // TODO: expose the option to prevent Steiner points on the boundary
  1107. //)igl_Qu8mg5v7";
  1108. const char *__doc_igl_unique = R"igl_Qu8mg5v7(// Act like matlab's [C,IA,IC] = unique(X)
  1109. //
  1110. // Templates:
  1111. // T comparable type T
  1112. // Inputs:
  1113. // A #A vector of type T
  1114. // Outputs:
  1115. // C #C vector of unique entries in A
  1116. // IA #C index vector so that C = A(IA);
  1117. // IC #A index vector so that A = C(IC);)igl_Qu8mg5v7";
  1118. const char *__doc_igl_unique_rows = R"igl_Qu8mg5v7(// Act like matlab's [C,IA,IC] = unique(X,'rows')
  1119. //
  1120. // Templates:
  1121. // DerivedA derived scalar type, e.g. MatrixXi or MatrixXd
  1122. // DerivedIA derived integer type, e.g. MatrixXi
  1123. // DerivedIC derived integer type, e.g. MatrixXi
  1124. // Inputs:
  1125. // A m by n matrix whose entries are to unique'd according to rows
  1126. // Outputs:
  1127. // C #C vector of unique rows in A
  1128. // IA #C index vector so that C = A(IA,:);
  1129. // IC #A index vector so that A = C(IC,:);)igl_Qu8mg5v7";
  1130. const char *__doc_igl_unproject_onto_mesh = R"igl_Qu8mg5v7(// Unproject a screen location (using current opengl viewport, projection, and
  1131. // model view) to a 3D position _onto_ a given mesh, if the ray through the
  1132. // given screen location (x,y) _hits_ the mesh.
  1133. //
  1134. // Inputs:
  1135. // pos screen space coordinates
  1136. // model model matrix
  1137. // proj projection matrix
  1138. // viewport vieweport vector
  1139. // V #V by 3 list of mesh vertex positions
  1140. // F #F by 3 list of mesh triangle indices into V
  1141. // Outputs:
  1142. // fid id of the first face hit
  1143. // bc barycentric coordinates of hit
  1144. // Returns true if there's a hit)igl_Qu8mg5v7";
  1145. const char *__doc_igl_upsample = R"igl_Qu8mg5v7(// Subdivide a mesh without moving vertices: loop subdivision but odd
  1146. // vertices stay put and even vertices are just edge midpoints
  1147. //
  1148. // Templates:
  1149. // MatV matrix for vertex positions, e.g. MatrixXd
  1150. // MatF matrix for vertex positions, e.g. MatrixXi
  1151. // Inputs:
  1152. // V #V by dim mesh vertices
  1153. // F #F by 3 mesh triangles
  1154. // Outputs:
  1155. // NV new vertex positions, V is guaranteed to be at top
  1156. // NF new list of face indices
  1157. //
  1158. // NOTE: V should not be the same as NV,
  1159. // NOTE: F should not be the same as NF, use other proto
  1160. //
  1161. // Known issues:
  1162. // - assumes (V,F) is edge-manifold.)igl_Qu8mg5v7";
  1163. const char *__doc_igl_winding_number = R"igl_Qu8mg5v7(// WINDING_NUMBER Compute the sum of solid angles of a triangle/tetrahedron
  1164. // described by points (vectors) V
  1165. //
  1166. // Templates:
  1167. // dim dimension of input
  1168. // Inputs:
  1169. // V n by 3 list of vertex positions
  1170. // F #F by 3 list of triangle indices, minimum index is 0
  1171. // O no by 3 list of origin positions
  1172. // Outputs:
  1173. // S no by 1 list of winding numbers
  1174. //
  1175. // 3d)igl_Qu8mg5v7";
  1176. const char *__doc_igl_winding_number_3 = R"igl_Qu8mg5v7(// Inputs:
  1177. // V pointer to array containing #V by 3 vertex positions along rows,
  1178. // given in column major order
  1179. // n number of mesh vertices
  1180. // F pointer to array containing #F by 3 face indices along rows,
  1181. // given in column major order
  1182. // m number of faces
  1183. // O pointer to array containing #O by 3 query positions along rows,
  1184. // given in column major order
  1185. // no number of origins
  1186. // Outputs:
  1187. // S no by 1 list of winding numbers)igl_Qu8mg5v7";
  1188. const char *__doc_igl_winding_number_2 = R"igl_Qu8mg5v7(//// Only one evaluation origin
  1189. //template <typename DerivedF>
  1190. //IGL_INLINE void winding_number_3(
  1191. // const double * V,
  1192. // const int n,
  1193. // const DerivedF * F,
  1194. // const int m,
  1195. // const double * O,
  1196. // double * S);
  1197. // 2d)igl_Qu8mg5v7";
  1198. const char *__doc_igl_writeMESH = R"igl_Qu8mg5v7(// save a tetrahedral volume mesh to a .mesh file
  1199. //
  1200. // Templates:
  1201. // Scalar type for positions and vectors (will be cast as double)
  1202. // Index type for indices (will be cast to int)
  1203. // Input:
  1204. // mesh_file_name path of .mesh file
  1205. // V double matrix of vertex positions #V by 3
  1206. // T #T list of tet indices into vertex positions
  1207. // F #F list of face indices into vertex positions
  1208. //
  1209. // Known bugs: Holes and regions are not supported)igl_Qu8mg5v7";
  1210. const char *__doc_igl_writeOBJ = R"igl_Qu8mg5v7(// Write a mesh in an ascii obj file
  1211. // Inputs:
  1212. // str path to outputfile
  1213. // V #V by 3 mesh vertex positions
  1214. // F #F by 3|4 mesh indices into V
  1215. // CN #CN by 3 normal vectors
  1216. // FN #F by 3|4 corner normal indices into CN
  1217. // TC #TC by 2|3 texture coordinates
  1218. // FTC #F by 3|4 corner texture coord indices into TC
  1219. // Returns true on success, false on error)igl_Qu8mg5v7";