12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061 |
- // This file is part of libigl, a simple c++ geometry processing library.
- //
- // Copyright (C) 2014 Daniele Panozzo <daniele.panozzo@gmail.com>, Olga Diamanti <olga.diam@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla Public License
- // v. 2.0. If a copy of the MPL was not distributed with this file, You can
- // obtain one at http://mozilla.org/MPL/2.0/.
- #include "rotation_matrix_from_directions.h"
- #include <Eigen/Geometry>
- template <typename Scalar>
- IGL_INLINE Eigen::Matrix<Scalar, 3, 3> igl::rotation_matrix_from_directions(const Eigen::Matrix<Scalar, 3, 1> v0,
- const Eigen::Matrix<Scalar, 3, 1> v1,
- bool normalized)
- {
- Eigen::Matrix<Scalar, 3, 3> rotM;
- const double epsilon=0.00001;
- // if (!normalized)
- // {
- // v0.normalize();
- // v1.normalize();
- // }
- Scalar dot=v0.normalized().dot(v1.normalized());
- ///control if there is no rotation
- if (dot>((double)1-epsilon))
- {
- rotM = Eigen::Matrix<Scalar, 3, 3>::Identity();
- return rotM;
- }
- ///find the axis of rotation
- Eigen::Matrix<Scalar, 3, 1> axis;
- axis=v0.cross(v1);
- axis.normalize();
- ///construct rotation matrix
- Scalar u=axis(0);
- Scalar v=axis(1);
- Scalar w=axis(2);
- Scalar phi=acos(dot);
- Scalar rcos = cos(phi);
- Scalar rsin = sin(phi);
- rotM(0,0) = rcos + u*u*(1-rcos);
- rotM(1,0) = w * rsin + v*u*(1-rcos);
- rotM(2,0) = -v * rsin + w*u*(1-rcos);
- rotM(0,1) = -w * rsin + u*v*(1-rcos);
- rotM(1,1) = rcos + v*v*(1-rcos);
- rotM(2,1) = u * rsin + w*v*(1-rcos);
- rotM(0,2) = v * rsin + u*w*(1-rcos);
- rotM(1,2) = -u * rsin + v*w*(1-rcos);
- rotM(2,2) = rcos + w*w*(1-rcos);
- return rotM;
- }
- #ifdef IGL_STATIC_LIBRARY
- // Explicit template specialization
- template Eigen::Matrix<double, 3, 3, 0, 3, 3> igl::rotation_matrix_from_directions<double>(const Eigen::Matrix<double, 3, 1, 0, 3, 1>, const Eigen::Matrix<double, 3, 1, 0, 3, 1>, const bool);
- #endif
|