order_facets_around_edges.cpp 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254
  1. // This file is part of libigl, a simple c++ geometry processing library.
  2. //
  3. // Copyright (C) 2015 Alec Jacobson <alecjacobson@gmail.com>
  4. //
  5. // This Source Code Form is subject to the terms of the Mozilla Public License
  6. // v. 2.0. If a copy of the MPL was not distributed with this file, You can
  7. // obtain one at http://mozilla.org/MPL/2.0/.
  8. #include "order_facets_around_edges.h"
  9. #include "../sort_angles.h"
  10. #include <type_traits>
  11. #include <CGAL/Exact_predicates_exact_constructions_kernel.h>
  12. template<
  13. typename DerivedV,
  14. typename DerivedF,
  15. typename DerivedN,
  16. typename DerivedE,
  17. typename DeriveduE,
  18. typename DerivedEMAP,
  19. typename uE2EType,
  20. typename uE2oEType,
  21. typename uE2CType >
  22. IGL_INLINE
  23. typename std::enable_if<!std::is_same<typename DerivedV::Scalar,
  24. typename CGAL::Exact_predicates_exact_constructions_kernel::FT>::value, void>::type
  25. igl::order_facets_around_edges(
  26. const Eigen::PlainObjectBase<DerivedV>& V,
  27. const Eigen::PlainObjectBase<DerivedF>& F,
  28. const Eigen::PlainObjectBase<DerivedN>& N,
  29. const Eigen::PlainObjectBase<DerivedE>& E,
  30. const Eigen::PlainObjectBase<DeriveduE>& uE,
  31. const Eigen::PlainObjectBase<DerivedEMAP>& EMAP,
  32. const std::vector<std::vector<uE2EType> >& uE2E,
  33. std::vector<std::vector<uE2oEType> >& uE2oE,
  34. std::vector<std::vector<uE2CType > >& uE2C ) {
  35. typedef Eigen::Matrix<typename DerivedN::Scalar, 3, 1> Vector3F;
  36. const typename DerivedV::Scalar EPS = 1e-12;
  37. const size_t num_faces = F.rows();
  38. const size_t num_undirected_edges = uE.rows();
  39. auto edge_index_to_face_index = [&](size_t ei) { return ei % num_faces; };
  40. auto edge_index_to_corner_index = [&](size_t ei) { return ei / num_faces; };
  41. uE2oE.resize(num_undirected_edges);
  42. uE2C.resize(num_undirected_edges);
  43. for(size_t ui = 0;ui<num_undirected_edges;ui++)
  44. {
  45. const auto& adj_edges = uE2E[ui];
  46. const size_t edge_valance = adj_edges.size();
  47. assert(edge_valance > 0);
  48. const auto ref_edge = adj_edges[0];
  49. const auto ref_face = edge_index_to_face_index(ref_edge);
  50. Vector3F ref_normal = N.row(ref_face);
  51. const auto ref_corner_o = edge_index_to_corner_index(ref_edge);
  52. const auto ref_corner_s = (ref_corner_o+1)%3;
  53. const auto ref_corner_d = (ref_corner_o+2)%3;
  54. const typename DerivedF::Scalar o = F(ref_face, ref_corner_o);
  55. const typename DerivedF::Scalar s = F(ref_face, ref_corner_s);
  56. const typename DerivedF::Scalar d = F(ref_face, ref_corner_d);
  57. Vector3F edge = V.row(d) - V.row(s);
  58. auto edge_len = edge.norm();
  59. bool degenerated = edge_len < EPS;
  60. if (degenerated) {
  61. if (edge_valance <= 2) {
  62. // There is only one way to order 2 or less faces.
  63. edge.setZero();
  64. } else {
  65. edge.setZero();
  66. Eigen::Matrix<typename DerivedN::Scalar, Eigen::Dynamic, 3>
  67. normals(edge_valance, 3);
  68. for (size_t fei=0; fei<edge_valance; fei++) {
  69. const auto fe = adj_edges[fei];
  70. const auto f = edge_index_to_face_index(fe);
  71. normals.row(fei) = N.row(f);
  72. }
  73. for (size_t i=0; i<edge_valance; i++) {
  74. size_t j = (i+1) % edge_valance;
  75. Vector3F ni = normals.row(i);
  76. Vector3F nj = normals.row(j);
  77. edge = ni.cross(nj);
  78. edge_len = edge.norm();
  79. if (edge_len >= EPS) {
  80. edge.normalize();
  81. break;
  82. }
  83. }
  84. // Ensure edge direction are consistent with reference face.
  85. Vector3F in_face_vec = V.row(o) - V.row(s);
  86. if (edge.cross(in_face_vec).dot(ref_normal) < 0) {
  87. edge *= -1;
  88. }
  89. if (edge.norm() < EPS) {
  90. std::cerr << "=====================================" << std::endl;
  91. std::cerr << " ui: " << ui << std::endl;
  92. std::cerr << "edge: " << ref_edge << std::endl;
  93. std::cerr << "face: " << ref_face << std::endl;
  94. std::cerr << " vs: " << V.row(s) << std::endl;
  95. std::cerr << " vd: " << V.row(d) << std::endl;
  96. std::cerr << "adj face normals: " << std::endl;
  97. std::cerr << normals << std::endl;
  98. std::cerr << "Very degenerated case detected:" << std::endl;
  99. std::cerr << "Near zero edge surrounded by "
  100. << edge_valance << " neearly colinear faces" <<
  101. std::endl;
  102. std::cerr << "=====================================" << std::endl;
  103. }
  104. }
  105. } else {
  106. edge.normalize();
  107. }
  108. Eigen::MatrixXd angle_data(edge_valance, 3);
  109. std::vector<bool> cons(edge_valance);
  110. for (size_t fei=0; fei<edge_valance; fei++) {
  111. const auto fe = adj_edges[fei];
  112. const auto f = edge_index_to_face_index(fe);
  113. const auto c = edge_index_to_corner_index(fe);
  114. cons[fei] = (d == F(f, (c+1)%3));
  115. assert( cons[fei] || (d == F(f,(c+2)%3)));
  116. assert(!cons[fei] || (s == F(f,(c+2)%3)));
  117. assert(!cons[fei] || (d == F(f,(c+1)%3)));
  118. Vector3F n = N.row(f);
  119. angle_data(fei, 0) = ref_normal.cross(n).dot(edge);
  120. angle_data(fei, 1) = ref_normal.dot(n);
  121. if (cons[fei]) {
  122. angle_data(fei, 0) *= -1;
  123. angle_data(fei, 1) *= -1;
  124. }
  125. angle_data(fei, 0) *= -1; // Sort clockwise.
  126. angle_data(fei, 2) = (cons[fei]?1.:-1.)*(f+1);
  127. }
  128. Eigen::VectorXi order;
  129. igl::sort_angles(angle_data, order);
  130. auto& ordered_edges = uE2oE[ui];
  131. auto& consistency = uE2C[ui];
  132. ordered_edges.resize(edge_valance);
  133. consistency.resize(edge_valance);
  134. for (size_t fei=0; fei<edge_valance; fei++) {
  135. ordered_edges[fei] = adj_edges[order[fei]];
  136. consistency[fei] = cons[order[fei]];
  137. }
  138. }
  139. }
  140. template<
  141. typename DerivedV,
  142. typename DerivedF,
  143. typename DerivedN,
  144. typename DerivedE,
  145. typename DeriveduE,
  146. typename DerivedEMAP,
  147. typename uE2EType,
  148. typename uE2oEType,
  149. typename uE2CType >
  150. IGL_INLINE
  151. typename std::enable_if<std::is_same<typename DerivedV::Scalar,
  152. typename CGAL::Exact_predicates_exact_constructions_kernel::FT>::value, void>::type
  153. igl::order_facets_around_edges(
  154. const Eigen::PlainObjectBase<DerivedV>& V,
  155. const Eigen::PlainObjectBase<DerivedF>& F,
  156. const Eigen::PlainObjectBase<DerivedN>& N,
  157. const Eigen::PlainObjectBase<DerivedE>& E,
  158. const Eigen::PlainObjectBase<DeriveduE>& uE,
  159. const Eigen::PlainObjectBase<DerivedEMAP>& EMAP,
  160. const std::vector<std::vector<uE2EType> >& uE2E,
  161. std::vector<std::vector<uE2oEType> >& uE2oE,
  162. std::vector<std::vector<uE2CType > >& uE2C ) {
  163. typedef Eigen::Matrix<typename DerivedN::Scalar, 3, 1> Vector3F;
  164. typedef Eigen::Matrix<typename DerivedV::Scalar, 3, 1> Vector3E;
  165. const typename DerivedV::Scalar EPS = 1e-12;
  166. const size_t num_faces = F.rows();
  167. const size_t num_undirected_edges = uE.rows();
  168. auto edge_index_to_face_index = [&](size_t ei) { return ei % num_faces; };
  169. auto edge_index_to_corner_index = [&](size_t ei) { return ei / num_faces; };
  170. uE2oE.resize(num_undirected_edges);
  171. uE2C.resize(num_undirected_edges);
  172. for(size_t ui = 0;ui<num_undirected_edges;ui++)
  173. {
  174. const auto& adj_edges = uE2E[ui];
  175. const size_t edge_valance = adj_edges.size();
  176. assert(edge_valance > 0);
  177. const auto ref_edge = adj_edges[0];
  178. const auto ref_face = edge_index_to_face_index(ref_edge);
  179. Vector3F ref_normal = N.row(ref_face);
  180. const auto ref_corner_o = edge_index_to_corner_index(ref_edge);
  181. const auto ref_corner_s = (ref_corner_o+1)%3;
  182. const auto ref_corner_d = (ref_corner_o+2)%3;
  183. const typename DerivedF::Scalar o = F(ref_face, ref_corner_o);
  184. const typename DerivedF::Scalar s = F(ref_face, ref_corner_s);
  185. const typename DerivedF::Scalar d = F(ref_face, ref_corner_d);
  186. Vector3E exact_edge = V.row(d) - V.row(s);
  187. exact_edge.array() /= exact_edge.squaredNorm();
  188. Vector3F edge(
  189. CGAL::to_double(exact_edge[0]),
  190. CGAL::to_double(exact_edge[1]),
  191. CGAL::to_double(exact_edge[2]));
  192. edge.normalize();
  193. Eigen::MatrixXd angle_data(edge_valance, 3);
  194. std::vector<bool> cons(edge_valance);
  195. for (size_t fei=0; fei<edge_valance; fei++) {
  196. const auto fe = adj_edges[fei];
  197. const auto f = edge_index_to_face_index(fe);
  198. const auto c = edge_index_to_corner_index(fe);
  199. cons[fei] = (d == F(f, (c+1)%3));
  200. assert( cons[fei] || (d == F(f,(c+2)%3)));
  201. assert(!cons[fei] || (s == F(f,(c+2)%3)));
  202. assert(!cons[fei] || (d == F(f,(c+1)%3)));
  203. Vector3F n = N.row(f);
  204. angle_data(fei, 0) = ref_normal.cross(n).dot(edge);
  205. angle_data(fei, 1) = ref_normal.dot(n);
  206. if (cons[fei]) {
  207. angle_data(fei, 0) *= -1;
  208. angle_data(fei, 1) *= -1;
  209. }
  210. angle_data(fei, 0) *= -1; // Sort clockwise.
  211. angle_data(fei, 2) = (cons[fei]?1.:-1.)*(f+1);
  212. }
  213. Eigen::VectorXi order;
  214. igl::sort_angles(angle_data, order);
  215. auto& ordered_edges = uE2oE[ui];
  216. auto& consistency = uE2C[ui];
  217. ordered_edges.resize(edge_valance);
  218. consistency.resize(edge_valance);
  219. for (size_t fei=0; fei<edge_valance; fei++) {
  220. ordered_edges[fei] = adj_edges[order[fei]];
  221. consistency[fei] = cons[order[fei]];
  222. }
  223. }
  224. }