505_MIQ.py 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273
  1. import sys, os
  2. from math import pi
  3. # Add the igl library to the modules search path
  4. sys.path.insert(0, os.getcwd() + "/../")
  5. import pyigl as igl
  6. from shared import TUTORIAL_SHARED_PATH, check_dependencies
  7. dependencies = ["comiso", "viewer"]
  8. check_dependencies(dependencies)
  9. V = igl.eigen.MatrixXd()
  10. F = igl.eigen.MatrixXi()
  11. # Face barycenters
  12. B = igl.eigen.MatrixXd()
  13. # Scale for visualizing the fields
  14. global_scale = 1
  15. extend_arrows = False
  16. # Cross field
  17. X1 = igl.eigen.MatrixXd()
  18. X2 = igl.eigen.MatrixXd()
  19. # Bisector field
  20. BIS1 = igl.eigen.MatrixXd()
  21. BIS2 = igl.eigen.MatrixXd()
  22. # Combed bisector
  23. BIS1_combed = igl.eigen.MatrixXd()
  24. BIS2_combed = igl.eigen.MatrixXd()
  25. # Per-corner, integer mismatches
  26. MMatch = igl.eigen.MatrixXi()
  27. # Field singularities
  28. isSingularity = igl.eigen.MatrixXi()
  29. singularityIndex = igl.eigen.MatrixXi()
  30. # Per corner seams
  31. Seams = igl.eigen.MatrixXi()
  32. # Combed field
  33. X1_combed = igl.eigen.MatrixXd()
  34. X2_combed = igl.eigen.MatrixXd()
  35. # Global parametrization (with seams)
  36. UV_seams = igl.eigen.MatrixXd()
  37. FUV_seams = igl.eigen.MatrixXi()
  38. # Global parametrization
  39. UV = igl.eigen.MatrixXd()
  40. FUV = igl.eigen.MatrixXi()
  41. # Texture
  42. texture_R = igl.eigen.MatrixXuc()
  43. texture_G = igl.eigen.MatrixXuc()
  44. texture_B = igl.eigen.MatrixXuc()
  45. # Create a texture that hides the integer translation in the parametrization
  46. def line_texture():
  47. size = 128
  48. size2 = int(size / 2)
  49. lineWidth = 3
  50. texture_R.setConstant(size, size, 255)
  51. for i in range(0, size):
  52. for j in range(size2 - lineWidth, size2 + lineWidth + 1):
  53. texture_R[i, j] = 0
  54. for i in range(size2 - lineWidth, size2 + lineWidth + 1):
  55. for j in range(0, size):
  56. texture_R[i, j] = 0
  57. texture_G = texture_R.copy()
  58. texture_B = texture_R.copy()
  59. return (texture_R, texture_G, texture_B)
  60. def key_down(viewer, key, modifier):
  61. global extend_arrows, texture_R, texture_G, texture_B
  62. if key == ord('E'):
  63. extend_arrows = not extend_arrows
  64. if key < ord('1') or key > ord('8'):
  65. return False
  66. viewer.data.clear()
  67. viewer.core.show_lines = False
  68. viewer.core.show_texture = False
  69. if key == ord('1'):
  70. # Cross field
  71. viewer.data.set_mesh(V, F)
  72. viewer.data.add_edges(B - global_scale * X1 if extend_arrows else B, B + global_scale * X1,
  73. igl.eigen.MatrixXd([[1, 0, 0]]))
  74. viewer.data.add_edges(B - global_scale * X2 if extend_arrows else B, B + global_scale * X2,
  75. igl.eigen.MatrixXd([[0, 0, 1]]))
  76. if key == ord('2'):
  77. # Bisector field
  78. viewer.data.set_mesh(V, F)
  79. viewer.data.add_edges(B - global_scale * BIS1 if extend_arrows else B, B + global_scale * BIS1,
  80. igl.eigen.MatrixXd([[1, 0, 0]]))
  81. viewer.data.add_edges(B - global_scale * BIS2 if extend_arrows else B, B + global_scale * BIS2,
  82. igl.eigen.MatrixXd([[0, 0, 1]]))
  83. if key == ord('3'):
  84. # Bisector field combed
  85. viewer.data.set_mesh(V, F)
  86. viewer.data.add_edges(B - global_scale * BIS1_combed if extend_arrows else B, B + global_scale * BIS1_combed,
  87. igl.eigen.MatrixXd([[1, 0, 0]]))
  88. viewer.data.add_edges(B - global_scale * BIS2_combed if extend_arrows else B, B + global_scale * BIS2_combed,
  89. igl.eigen.MatrixXd([[0, 0, 1]]))
  90. if key == ord('4'):
  91. # Singularities and cuts
  92. viewer.data.set_mesh(V, F)
  93. # Plot cuts
  94. l_count = Seams.sum()
  95. P1 = igl.eigen.MatrixXd(l_count, 3)
  96. P2 = igl.eigen.MatrixXd(l_count, 3)
  97. for i in range(0, Seams.rows()):
  98. for j in range(0, Seams.cols()):
  99. if Seams[i, j] != 0:
  100. P1.setRow(l_count - 1, V.row(F[i, j]))
  101. P2.setRow(l_count - 1, V.row(F[i, (j + 1) % 3]))
  102. l_count -= 1
  103. viewer.data.add_edges(P1, P2, igl.eigen.MatrixXd([[1, 0, 0]]))
  104. # Plot the singularities as colored dots (red for negative, blue for positive)
  105. for i in range(0, singularityIndex.size()):
  106. if 2 > singularityIndex[i] > 0:
  107. viewer.data.add_points(V.row(i), igl.eigen.MatrixXd([[1, 0, 0]]))
  108. elif singularityIndex[i] > 2:
  109. viewer.data.add_points(V.row(i), igl.eigen.MatrixXd([[1, 0, 0]]))
  110. if key == ord('5'):
  111. # Singularities and cuts, original field
  112. # Singularities and cuts
  113. viewer.data.set_mesh(V, F)
  114. viewer.data.add_edges(B - global_scale * X1_combed if extend_arrows else B, B + global_scale * X1_combed,
  115. igl.eigen.MatrixXd([[1, 0, 0]]))
  116. viewer.data.add_edges(B - global_scale * X2_combed if extend_arrows else B, B + global_scale * X2_combed,
  117. igl.eigen.MatrixXd([[0, 0, 1]]))
  118. # Plot cuts
  119. l_count = Seams.sum()
  120. P1 = igl.eigen.MatrixXd(l_count, 3)
  121. P2 = igl.eigen.MatrixXd(l_count, 3)
  122. for i in range(0, Seams.rows()):
  123. for j in range(0, Seams.cols()):
  124. if Seams[i, j] != 0:
  125. P1.setRow(l_count - 1, V.row(F[i, j]))
  126. P2.setRow(l_count - 1, V.row(F[i, (j + 1) % 3]))
  127. l_count -= 1
  128. viewer.data.add_edges(P1, P2, igl.eigen.MatrixXd([[1, 0, 0]]))
  129. # Plot the singularities as colored dots (red for negative, blue for positive)
  130. for i in range(0, singularityIndex.size()):
  131. if 2 > singularityIndex[i] > 0:
  132. viewer.data.add_points(V.row(i), igl.eigen.MatrixXd([[1, 0, 0]]))
  133. elif singularityIndex[i] > 2:
  134. viewer.data.add_points(V.row(i), igl.eigen.MatrixXd([[0, 1, 0]]))
  135. if key == ord('6'):
  136. # Global parametrization UV
  137. viewer.data.set_mesh(UV, FUV)
  138. viewer.data.set_uv(UV)
  139. viewer.core.show_lines = True
  140. if key == ord('7'):
  141. # Global parametrization in 3D
  142. viewer.data.set_mesh(V, F)
  143. viewer.data.set_uv(UV, FUV)
  144. viewer.core.show_texture = True
  145. if key == ord('8'):
  146. # Global parametrization in 3D with seams
  147. viewer.data.set_mesh(V, F)
  148. viewer.data.set_uv(UV_seams, FUV_seams)
  149. viewer.core.show_texture = True
  150. viewer.data.set_colors(igl.eigen.MatrixXd([[1, 1, 1]]))
  151. viewer.data.set_texture(texture_R, texture_B, texture_G)
  152. viewer.core.align_camera_center(viewer.data.V, viewer.data.F)
  153. return False
  154. # Load a mesh in OFF format
  155. igl.readOFF(TUTORIAL_SHARED_PATH + "3holes.off", V, F)
  156. # Compute face barycenters
  157. igl.barycenter(V, F, B)
  158. # Compute scale for visualizing fields
  159. global_scale = .5 * igl.avg_edge_length(V, F)
  160. # Contrain one face
  161. b = igl.eigen.MatrixXi([[0]])
  162. bc = igl.eigen.MatrixXd([[1, 0, 0]])
  163. # Create a smooth 4-RoSy field
  164. S = igl.eigen.MatrixXd()
  165. igl.comiso.nrosy(V, F, b, bc, igl.eigen.MatrixXi(), igl.eigen.MatrixXd(), igl.eigen.MatrixXd(), 4, 0.5, X1, S)
  166. # Find the the orthogonal vector
  167. B1 = igl.eigen.MatrixXd()
  168. B2 = igl.eigen.MatrixXd()
  169. B3 = igl.eigen.MatrixXd()
  170. igl.local_basis(V, F, B1, B2, B3)
  171. X2 = igl.rotate_vectors(X1, igl.eigen.MatrixXd.Constant(1, 1, pi / 2), B1, B2)
  172. gradient_size = 50
  173. iterations = 0
  174. stiffness = 5.0
  175. direct_round = False
  176. # Always work on the bisectors, it is more general
  177. igl.compute_frame_field_bisectors(V, F, X1, X2, BIS1, BIS2)
  178. # Comb the field, implicitly defining the seams
  179. igl.comb_cross_field(V, F, BIS1, BIS2, BIS1_combed, BIS2_combed)
  180. # Find the integer mismatches
  181. igl.cross_field_missmatch(V, F, BIS1_combed, BIS2_combed, True, MMatch)
  182. # Find the singularities
  183. igl.find_cross_field_singularities(V, F, MMatch, isSingularity, singularityIndex)
  184. # Cut the mesh, duplicating all vertices on the seams
  185. igl.cut_mesh_from_singularities(V, F, MMatch, Seams)
  186. # Comb the frame-field accordingly
  187. igl.comb_frame_field(V, F, X1, X2, BIS1_combed, BIS2_combed, X1_combed, X2_combed)
  188. # Global parametrization
  189. igl.comiso.miq(V, F, X1_combed, X2_combed, MMatch, isSingularity, Seams, UV, FUV, gradient_size, stiffness,
  190. direct_round, iterations, 5, True, True)
  191. # Global parametrization (with seams, only for demonstration)
  192. igl.comiso.miq(V, F, X1_combed, X2_combed, MMatch, isSingularity, Seams, UV_seams, FUV_seams, gradient_size,
  193. stiffness, direct_round, iterations, 5, False)
  194. # Plot the mesh
  195. viewer = igl.viewer.Viewer()
  196. # Replace the standard texture with an integer shift invariant texture
  197. (texture_R, texture_G, texture_B) = line_texture()
  198. # Plot the original mesh with a texture parametrization
  199. key_down(viewer, ord('7'), 0)
  200. # Launch the viewer
  201. viewer.callback_key_down = key_down
  202. viewer.launch()