py_doc.cpp 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044
  1. const char *__doc_igl_active_set = R"igl_Qu8mg5v7(// Known Bugs: rows of [Aeq;Aieq] **must** be linearly independent. Should be
  2. // using QR decomposition otherwise:
  3. // http://www.okstate.edu/sas/v8/sashtml/ormp/chap5/sect32.htm
  4. //
  5. // ACTIVE_SET Minimize quadratic energy
  6. //
  7. // 0.5*Z'*A*Z + Z'*B + C with constraints
  8. //
  9. // that Z(known) = Y, optionally also subject to the constraints Aeq*Z = Beq,
  10. // and further optionally subject to the linear inequality constraints that
  11. // Aieq*Z <= Bieq and constant inequality constraints lx <= x <= ux
  12. //
  13. // Inputs:
  14. // A n by n matrix of quadratic coefficients
  15. // B n by 1 column of linear coefficients
  16. // known list of indices to known rows in Z
  17. // Y list of fixed values corresponding to known rows in Z
  18. // Aeq meq by n list of linear equality constraint coefficients
  19. // Beq meq by 1 list of linear equality constraint constant values
  20. // Aieq mieq by n list of linear inequality constraint coefficients
  21. // Bieq mieq by 1 list of linear inequality constraint constant values
  22. // lx n by 1 list of lower bounds [] implies -Inf
  23. // ux n by 1 list of upper bounds [] implies Inf
  24. // params struct of additional parameters (see below)
  25. // Z if not empty, is taken to be an n by 1 list of initial guess values
  26. // (see output)
  27. // Outputs:
  28. // Z n by 1 list of solution values
  29. // Returns true on success, false on error
  30. //
  31. // Benchmark: For a harmonic solve on a mesh with 325K facets, matlab 2.2
  32. // secs, igl/min_quad_with_fixed.h 7.1 secs
  33. //)igl_Qu8mg5v7";
  34. const char *__doc_igl_arap_precomputation = R"igl_Qu8mg5v7(// Compute necessary information to start using an ARAP deformation
  35. //
  36. // Inputs:
  37. // V #V by dim list of mesh positions
  38. // F #F by simplex-size list of triangle|tet indices into V
  39. // dim dimension being used at solve time. For deformation usually dim =
  40. // V.cols(), for surface parameterization V.cols() = 3 and dim = 2
  41. // b #b list of "boundary" fixed vertex indices into V
  42. // Outputs:
  43. // data struct containing necessary precomputation)igl_Qu8mg5v7";
  44. const char *__doc_igl_arap_solve = R"igl_Qu8mg5v7(// Inputs:
  45. // bc #b by dim list of boundary conditions
  46. // data struct containing necessary precomputation and parameters
  47. // U #V by dim initial guess)igl_Qu8mg5v7";
  48. const char *__doc_igl_avg_edge_length = R"igl_Qu8mg5v7(// Compute the average edge length for the given triangle mesh
  49. // Templates:
  50. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  51. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  52. // DerivedL derived from edge lengths matrix type: i.e. MatrixXd
  53. // Inputs:
  54. // V eigen matrix #V by 3
  55. // F #F by simplex-size list of mesh faces (must be simplex)
  56. // Outputs:
  57. // l average edge length
  58. //
  59. // See also: adjacency_matrix)igl_Qu8mg5v7";
  60. const char *__doc_igl_barycenter = R"igl_Qu8mg5v7(// Computes the barycenter of every simplex
  61. //
  62. // Inputs:
  63. // V #V x dim matrix of vertex coordinates
  64. // F #F x simplex_size matrix of indices of simplex corners into V
  65. // Output:
  66. // BC #F x dim matrix of 3d vertices
  67. //)igl_Qu8mg5v7";
  68. const char *__doc_igl_barycentric_coordinates = R"igl_Qu8mg5v7(// Compute barycentric coordinates in a tet
  69. //
  70. // Inputs:
  71. // P #P by 3 Query points in 3d
  72. // A #P by 3 Tet corners in 3d
  73. // B #P by 3 Tet corners in 3d
  74. // C #P by 3 Tet corners in 3d
  75. // D #P by 3 Tet corners in 3d
  76. // Outputs:
  77. // L #P by 4 list of barycentric coordinates
  78. // )igl_Qu8mg5v7";
  79. const char *__doc_igl_boundary_facets = R"igl_Qu8mg5v7(// BOUNDARY_FACETS Determine boundary faces (edges) of tetrahedra (triangles)
  80. // stored in T (analogous to qptoolbox's `outline` and `boundary_faces`).
  81. //
  82. // Templates:
  83. // IntegerT integer-value: e.g. int
  84. // IntegerF integer-value: e.g. int
  85. // Input:
  86. // T tetrahedron (triangle) index list, m by 4 (3), where m is the number of tetrahedra
  87. // Output:
  88. // F list of boundary faces, n by 3 (2), where n is the number of boundary faces
  89. //
  90. //)igl_Qu8mg5v7";
  91. const char *__doc_igl_boundary_loop = R"igl_Qu8mg5v7(// Compute list of ordered boundary loops for a manifold mesh.
  92. //
  93. // Templates:
  94. // Index index type
  95. // Inputs:
  96. // F #V by dim list of mesh faces
  97. // Outputs:
  98. // L list of loops where L[i] = ordered list of boundary vertices in loop i
  99. //)igl_Qu8mg5v7";
  100. const char *__doc_igl_cat = R"igl_Qu8mg5v7(// Perform concatenation of a two matrices along a single dimension
  101. // If dim == 1, then C = [A;B]. If dim == 2 then C = [A B]
  102. //
  103. // Template:
  104. // Scalar scalar data type for sparse matrices like double or int
  105. // Mat matrix type for all matrices (e.g. MatrixXd, SparseMatrix)
  106. // MatC matrix type for ouput matrix (e.g. MatrixXd) needs to support
  107. // resize
  108. // Inputs:
  109. // A first input matrix
  110. // B second input matrix
  111. // dim dimension along which to concatenate, 0 or 1
  112. // Outputs:
  113. // C output matrix
  114. // )igl_Qu8mg5v7";
  115. const char *__doc_igl_collapse_edge = R"igl_Qu8mg5v7(See collapse_edge for the documentation.)igl_Qu8mg5v7";
  116. const char *__doc_igl_colon = R"igl_Qu8mg5v7(// Colon operator like matlab's colon operator. Enumerats values between low
  117. // and hi with step step.
  118. // Templates:
  119. // L should be a eigen matrix primitive type like int or double
  120. // S should be a eigen matrix primitive type like int or double
  121. // H should be a eigen matrix primitive type like int or double
  122. // T should be a eigen matrix primitive type like int or double
  123. // Inputs:
  124. // low starting value if step is valid then this is *always* the first
  125. // element of I
  126. // step step difference between sequential elements returned in I,
  127. // remember this will be cast to template T at compile time. If low<hi
  128. // then step must be positive. If low>hi then step must be negative.
  129. // Otherwise I will be set to empty.
  130. // hi ending value, if (hi-low)%step is zero then this will be the last
  131. // element in I. If step is positive there will be no elements greater
  132. // than hi, vice versa if hi<low
  133. // Output:
  134. // I list of values from low to hi with step size step)igl_Qu8mg5v7";
  135. const char *__doc_igl_comb_cross_field = R"igl_Qu8mg5v7(// Inputs:
  136. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  137. // F #F by 4 eigen Matrix of face (quad) indices
  138. // PD1in #F by 3 eigen Matrix of the first per face cross field vector
  139. // PD2in #F by 3 eigen Matrix of the second per face cross field vector
  140. // Output:
  141. // PD1out #F by 3 eigen Matrix of the first combed cross field vector
  142. // PD2out #F by 3 eigen Matrix of the second combed cross field vector
  143. //)igl_Qu8mg5v7";
  144. const char *__doc_igl_comb_frame_field = R"igl_Qu8mg5v7(// Inputs:
  145. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  146. // F #F by 4 eigen Matrix of face (quad) indices
  147. // PD1 #F by 3 eigen Matrix of the first per face cross field vector
  148. // PD2 #F by 3 eigen Matrix of the second per face cross field vector
  149. // BIS1_combed #F by 3 eigen Matrix of the first combed bisector field vector
  150. // BIS2_combed #F by 3 eigen Matrix of the second combed bisector field vector
  151. // Output:
  152. // PD1_combed #F by 3 eigen Matrix of the first combed cross field vector
  153. // PD2_combed #F by 3 eigen Matrix of the second combed cross field vector
  154. //)igl_Qu8mg5v7";
  155. const char *__doc_igl_compute_frame_field_bisectors = R"igl_Qu8mg5v7(// Compute bisectors of a frame field defined on mesh faces
  156. // Inputs:
  157. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  158. // F #F by 3 eigen Matrix of face (triangle) indices
  159. // B1 #F by 3 eigen Matrix of face (triangle) base vector 1
  160. // B2 #F by 3 eigen Matrix of face (triangle) base vector 2
  161. // PD1 #F by 3 eigen Matrix of the first per face frame field vector
  162. // PD2 #F by 3 eigen Matrix of the second per face frame field vector
  163. // Output:
  164. // BIS1 #F by 3 eigen Matrix of the first per face frame field bisector
  165. // BIS2 #F by 3 eigen Matrix of the second per face frame field bisector
  166. //)igl_Qu8mg5v7";
  167. const char *__doc_igl_copyleft_cgal_mesh_boolean = R"igl_Qu8mg5v7(// MESH_BOOLEAN Compute boolean csg operations on "solid", consistently
  168. // oriented meshes.
  169. //
  170. // Inputs:
  171. // VA #VA by 3 list of vertex positions of first mesh
  172. // FA #FA by 3 list of triangle indices into VA
  173. // VB #VB by 3 list of vertex positions of second mesh
  174. // FB #FB by 3 list of triangle indices into VB
  175. // type type of boolean operation
  176. // Outputs:
  177. // VC #VC by 3 list of vertex positions of boolean result mesh
  178. // FC #FC by 3 list of triangle indices into VC
  179. // J #FC list of indices into [FA;FA.rows()+FB] revealing "birth" facet
  180. // Returns true if inputs induce a piecewise constant winding number
  181. // field and type is valid
  182. //
  183. // See also: mesh_boolean_cork, intersect_other,
  184. // remesh_self_intersections)igl_Qu8mg5v7";
  185. const char *__doc_igl_copyleft_comiso_miq = R"igl_Qu8mg5v7(// Inputs:
  186. // V #V by 3 list of mesh vertex 3D positions
  187. // F #F by 3 list of faces indices in V
  188. // PD1 #V by 3 first line of the Jacobian per triangle
  189. // PD2 #V by 3 second line of the Jacobian per triangle
  190. // (optional, if empty it will be a vector in the tangent plane orthogonal to PD1)
  191. // scale global scaling for the gradient (controls the quads resolution)
  192. // stiffness weight for the stiffness iterations
  193. // direct_round greedily round all integer variables at once (greatly improves optimization speed but lowers quality)
  194. // iter stiffness iterations (0 = no stiffness)
  195. // local_iter number of local iterations for the integer rounding
  196. // do_round enables the integer rounding (disabling it could be useful for debugging)
  197. // round_vertices id of additional vertices that should be snapped to integer coordinates
  198. // hard_features #H by 2 list of pairs of vertices that belongs to edges that should be snapped to integer coordinates
  199. //
  200. // Output:
  201. // UV #UV by 2 list of vertices in 2D
  202. // FUV #FUV by 3 list of face indices in UV
  203. //
  204. // TODO: rename the parameters name in the cpp consistenly
  205. // improve the handling of hard_features, right now it might fail in difficult cases)igl_Qu8mg5v7";
  206. const char *__doc_igl_copyleft_comiso_nrosy = R"igl_Qu8mg5v7(// Generate a N-RoSy field from a sparse set of constraints
  207. //
  208. // Inputs:
  209. // V #V by 3 list of mesh vertex coordinates
  210. // F #F by 3 list of mesh faces (must be triangles)
  211. // b #B by 1 list of constrained face indices
  212. // bc #B by 3 list of representative vectors for the constrained
  213. // faces
  214. // b_soft #S by 1 b for soft constraints
  215. // w_soft #S by 1 weight for the soft constraints (0-1)
  216. // bc_soft #S by 3 bc for soft constraints
  217. // N the degree of the N-RoSy vector field
  218. // soft the strenght of the soft contraints w.r.t. smoothness
  219. // (0 -> smoothness only, 1->constraints only)
  220. // Outputs:
  221. // R #F by 3 the representative vectors of the interpolated field
  222. // S #V by 1 the singularity index for each vertex (0 = regular))igl_Qu8mg5v7";
  223. const char *__doc_igl_copyleft_marching_cubes = R"igl_Qu8mg5v7(// marching_cubes( values, points, x_res, y_res, z_res, vertices, faces )
  224. //
  225. // performs marching cubes reconstruction on the grid defined by values, and
  226. // points, and generates vertices and faces
  227. //
  228. // Input:
  229. // values #number_of_grid_points x 1 array -- the scalar values of an
  230. // implicit function defined on the grid points (<0 in the inside of the
  231. // surface, 0 on the border, >0 outside)
  232. // points #number_of_grid_points x 3 array -- 3-D positions of the grid
  233. // points, ordered in x,y,z order:
  234. // points[index] = the point at (x,y,z) where :
  235. // x = (index % (xres -1),
  236. // y = (index / (xres-1)) %(yres-1),
  237. // z = index / (xres -1) / (yres -1) ).
  238. // where x,y,z index x, y, z dimensions
  239. // i.e. index = x + y*xres + z*xres*yres
  240. // xres resolutions of the grid in x dimension
  241. // yres resolutions of the grid in y dimension
  242. // zres resolutions of the grid in z dimension
  243. // Output:
  244. // vertices #V by 3 list of mesh vertex positions
  245. // faces #F by 3 list of mesh triangle indices
  246. //)igl_Qu8mg5v7";
  247. const char *__doc_igl_copyleft_tetgen_tetrahedralize = R"igl_Qu8mg5v7(// Mesh the interior of a surface mesh (V,F) using tetgen
  248. //
  249. // Inputs:
  250. // V #V by 3 vertex position list
  251. // F #F list of polygon face indices into V (0-indexed)
  252. // switches string of tetgen options (See tetgen documentation) e.g.
  253. // "pq1.414a0.01" tries to mesh the interior of a given surface with
  254. // quality and area constraints
  255. // "" will mesh the convex hull constrained to pass through V (ignores F)
  256. // Outputs:
  257. // TV #V by 3 vertex position list
  258. // TT #T by 4 list of tet face indices
  259. // TF #F by 3 list of triangle face indices
  260. // Returns status:
  261. // 0 success
  262. // 1 tetgen threw exception
  263. // 2 tetgen did not crash but could not create any tets (probably there are
  264. // holes, duplicate faces etc.)
  265. // -1 other error)igl_Qu8mg5v7";
  266. const char *__doc_igl_cotmatrix = R"igl_Qu8mg5v7(// Constructs the cotangent stiffness matrix (discrete laplacian) for a given
  267. // mesh (V,F).
  268. //
  269. // Templates:
  270. // DerivedV derived type of eigen matrix for V (e.g. derived from
  271. // MatrixXd)
  272. // DerivedF derived type of eigen matrix for F (e.g. derived from
  273. // MatrixXi)
  274. // Scalar scalar type for eigen sparse matrix (e.g. double)
  275. // Inputs:
  276. // V #V by dim list of mesh vertex positions
  277. // F #F by simplex_size list of mesh faces (must be triangles)
  278. // Outputs:
  279. // L #V by #V cotangent matrix, each row i corresponding to V(i,:)
  280. //
  281. // See also: adjacency_matrix
  282. //
  283. // Note: This Laplacian uses the convention that diagonal entries are
  284. // **minus** the sum of off-diagonal entries. The diagonal entries are
  285. // therefore in general negative and the matrix is **negative** semi-definite
  286. // (immediately, -L is **positive** semi-definite)
  287. //
  288. // Known bugs: off by 1e-16 on regular grid. I think its a problem of
  289. // arithmetic order in cotmatrix_entries.h: C(i,e) = (arithmetic)/dblA/4)igl_Qu8mg5v7";
  290. const char *__doc_igl_covariance_scatter_matrix = R"igl_Qu8mg5v7(// Construct the covariance scatter matrix for a given arap energy
  291. // Inputs:
  292. // V #V by Vdim list of initial domain positions
  293. // F #F by 3 list of triangle indices into V
  294. // energy ARAPEnergyType enum value defining which energy is being used.
  295. // See ARAPEnergyType.h for valid options and explanations.
  296. // Outputs:
  297. // CSM dim*#V/#F by dim*#V sparse matrix containing special laplacians along
  298. // the diagonal so that when multiplied by V gives covariance matrix
  299. // elements, can be used to speed up covariance matrix computation)igl_Qu8mg5v7";
  300. const char *__doc_igl_cross_field_missmatch = R"igl_Qu8mg5v7(// Inputs:
  301. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  302. // F #F by 3 eigen Matrix of face (quad) indices
  303. // PD1 #F by 3 eigen Matrix of the first per face cross field vector
  304. // PD2 #F by 3 eigen Matrix of the second per face cross field vector
  305. // isCombed boolean, specifying whether the field is combed (i.e. matching has been precomputed.
  306. // If not, the field is combed first.
  307. // Output:
  308. // Handle_MMatch #F by 3 eigen Matrix containing the integer missmatch of the cross field
  309. // across all face edges
  310. //)igl_Qu8mg5v7";
  311. const char *__doc_igl_cut_mesh_from_singularities = R"igl_Qu8mg5v7(// Given a mesh (V,F) and the integer mismatch of a cross field per edge
  312. // (MMatch), finds the cut_graph connecting the singularities (seams) and the
  313. // degree of the singularities singularity_index
  314. //
  315. // Input:
  316. // V #V by 3 list of mesh vertex positions
  317. // F #F by 3 list of faces
  318. // MMatch #F by 3 list of per corner integer mismatch
  319. // Outputs:
  320. // seams #F by 3 list of per corner booleans that denotes if an edge is a
  321. // seam or not
  322. //)igl_Qu8mg5v7";
  323. const char *__doc_igl_doublearea = R"igl_Qu8mg5v7(// DOUBLEAREA computes twice the area for each input triangle[quad]
  324. //
  325. // Templates:
  326. // DerivedV derived type of eigen matrix for V (e.g. derived from
  327. // MatrixXd)
  328. // DerivedF derived type of eigen matrix for F (e.g. derived from
  329. // MatrixXi)
  330. // DeriveddblA derived type of eigen matrix for dblA (e.g. derived from
  331. // MatrixXd)
  332. // Inputs:
  333. // V #V by dim list of mesh vertex positions
  334. // F #F by simplex_size list of mesh faces (must be triangles or quads)
  335. // Outputs:
  336. // dblA #F list of triangle[quad] double areas (SIGNED only for 2D input)
  337. //
  338. // Known bug: For dim==3 complexity is O(#V + #F)!! Not just O(#F). This is a big deal
  339. // if you have 1million unreferenced vertices and 1 face)igl_Qu8mg5v7";
  340. const char *__doc_igl_doublearea_single = R"igl_Qu8mg5v7(// Single triangle in 2D!
  341. //
  342. // This should handle streams of corners not just single corners)igl_Qu8mg5v7";
  343. const char *__doc_igl_doublearea_quad = R"igl_Qu8mg5v7(// DOUBLEAREA_QUAD computes twice the area for each input quadrilateral
  344. //
  345. // Inputs:
  346. // V #V by dim list of mesh vertex positions
  347. // F #F by simplex_size list of mesh faces (must be quadrilaterals)
  348. // Outputs:
  349. // dblA #F list of quadrilateral double areas
  350. //)igl_Qu8mg5v7";
  351. const char *__doc_igl_edge_lengths = R"igl_Qu8mg5v7(// Constructs a list of lengths of edges opposite each index in a face
  352. // (triangle/tet) list
  353. //
  354. // Templates:
  355. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  356. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  357. // DerivedL derived from edge lengths matrix type: i.e. MatrixXd
  358. // Inputs:
  359. // V eigen matrix #V by 3
  360. // F #F by 2 list of mesh edges
  361. // or
  362. // F #F by 3 list of mesh faces (must be triangles)
  363. // or
  364. // T #T by 4 list of mesh elements (must be tets)
  365. // Outputs:
  366. // L #F by {1|3|6} list of edge lengths
  367. // for edges, column of lengths
  368. // for triangles, columns correspond to edges [1,2],[2,0],[0,1]
  369. // for tets, columns correspond to edges
  370. // [3 0],[3 1],[3 2],[1 2],[2 0],[0 1]
  371. //)igl_Qu8mg5v7";
  372. const char *__doc_igl_eigs = R"igl_Qu8mg5v7(See eigs for the documentation.)igl_Qu8mg5v7";
  373. const char *__doc_igl_embree_ambient_occlusion = R"igl_Qu8mg5v7(// Compute ambient occlusion per given point
  374. //
  375. // Inputs:
  376. // ei EmbreeIntersector containing (V,F)
  377. // P #P by 3 list of origin points
  378. // N #P by 3 list of origin normals
  379. // Outputs:
  380. // S #P list of ambient occlusion values between 1 (fully occluded) and
  381. // 0 (not occluded)
  382. //)igl_Qu8mg5v7";
  383. const char *__doc_igl_find_cross_field_singularities = R"igl_Qu8mg5v7(// Inputs:
  384. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  385. // F #F by 3 eigen Matrix of face (quad) indices
  386. // Handle_MMatch #F by 3 eigen Matrix containing the integer missmatch of the cross field
  387. // across all face edges
  388. // Output:
  389. // isSingularity #V by 1 boolean eigen Vector indicating the presence of a singularity on a vertex
  390. // singularityIndex #V by 1 integer eigen Vector containing the singularity indices
  391. //)igl_Qu8mg5v7";
  392. const char *__doc_igl_fit_rotations = R"igl_Qu8mg5v7(// Known issues: This seems to be implemented in Eigen/Geometry:
  393. // Eigen::umeyama
  394. //
  395. // FIT_ROTATIONS Given an input mesh and new positions find rotations for
  396. // every covariance matrix in a stack of covariance matrices
  397. //
  398. // Inputs:
  399. // S nr*dim by dim stack of covariance matrices
  400. // single_precision whether to use single precision (faster)
  401. // Outputs:
  402. // R dim by dim * nr list of rotations
  403. //)igl_Qu8mg5v7";
  404. const char *__doc_igl_fit_rotations_planar = R"igl_Qu8mg5v7(// FIT_ROTATIONS Given an input mesh and new positions find 2D rotations for
  405. // every vertex that best maps its one ring to the new one ring
  406. //
  407. // Inputs:
  408. // S nr*dim by dim stack of covariance matrices, third column and every
  409. // third row will be ignored
  410. // Outputs:
  411. // R dim by dim * nr list of rotations, third row and third column of each
  412. // rotation will just be identity
  413. //)igl_Qu8mg5v7";
  414. const char *__doc_igl_fit_rotations_SSE = R"igl_Qu8mg5v7(See fit_rotations_SSE for the documentation.)igl_Qu8mg5v7";
  415. const char *__doc_igl_floor = R"igl_Qu8mg5v7(// Floor a given matrix to nearest integers
  416. //
  417. // Inputs:
  418. // X m by n matrix of scalars
  419. // Outputs:
  420. // Y m by n matrix of floored integers)igl_Qu8mg5v7";
  421. const char *__doc_igl_gaussian_curvature = R"igl_Qu8mg5v7(// Compute discrete local integral gaussian curvature (angle deficit, without
  422. // averaging by local area).
  423. //
  424. // Inputs:
  425. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  426. // F #F by 3 eigen Matrix of face (triangle) indices
  427. // Output:
  428. // K #V by 1 eigen Matrix of discrete gaussian curvature values
  429. //)igl_Qu8mg5v7";
  430. const char *__doc_igl_grad = R"igl_Qu8mg5v7(// Gradient of a scalar function defined on piecewise linear elements (mesh)
  431. // is constant on each triangle i,j,k:
  432. // grad(Xijk) = (Xj-Xi) * (Vi - Vk)^R90 / 2A + (Xk-Xi) * (Vj - Vi)^R90 / 2A
  433. // where Xi is the scalar value at vertex i, Vi is the 3D position of vertex
  434. // i, and A is the area of triangle (i,j,k). ^R90 represent a rotation of
  435. // 90 degrees
  436. //)igl_Qu8mg5v7";
  437. const char *__doc_igl_harmonic = R"igl_Qu8mg5v7(// Compute k-harmonic weight functions "coordinates".
  438. //
  439. //
  440. // Inputs:
  441. // V #V by dim vertex positions
  442. // F #F by simplex-size list of element indices
  443. // b #b boundary indices into V
  444. // bc #b by #W list of boundary values
  445. // k power of harmonic operation (1: harmonic, 2: biharmonic, etc)
  446. // Outputs:
  447. // W #V by #W list of weights
  448. //)igl_Qu8mg5v7";
  449. const char *__doc_igl_internal_angles = R"igl_Qu8mg5v7(// Compute internal angles for a triangle mesh
  450. //
  451. // Inputs:
  452. // V #V by dim eigen Matrix of mesh vertex nD positions
  453. // F #F by poly-size eigen Matrix of face (triangle) indices
  454. // Output:
  455. // K #F by poly-size eigen Matrix of internal angles
  456. // for triangles, columns correspond to edges [1,2],[2,0],[0,1]
  457. //
  458. // Known Issues:
  459. // if poly-size ≠ 3 then dim must equal 3.)igl_Qu8mg5v7";
  460. const char *__doc_igl_invert_diag = R"igl_Qu8mg5v7(// Templates:
  461. // T should be a eigen sparse matrix primitive type like int or double
  462. // Inputs:
  463. // X an m by n sparse matrix
  464. // Outputs:
  465. // Y an m by n sparse matrix)igl_Qu8mg5v7";
  466. const char *__doc_igl_is_irregular_vertex = R"igl_Qu8mg5v7(// Determine if a vertex is irregular, i.e. it has more than 6 (triangles)
  467. // or 4 (quads) incident edges. Vertices on the boundary are ignored.
  468. //
  469. // Inputs:
  470. // V #V by dim list of vertex positions
  471. // F #F by 3[4] list of triangle[quads] indices
  472. // Returns #V vector of bools revealing whether vertices are singular
  473. //)igl_Qu8mg5v7";
  474. const char *__doc_igl_jet = R"igl_Qu8mg5v7(// JET like MATLAB's jet
  475. //
  476. // Inputs:
  477. // m number of colors
  478. // Outputs:
  479. // J m by list of RGB colors between 0 and 1
  480. //
  481. //#ifndef IGL_NO_EIGEN
  482. // void jet(const int m, Eigen::MatrixXd & J);
  483. //#endif
  484. // Wrapper for directly computing [r,g,b] values for a given factor f between
  485. // 0 and 1
  486. //
  487. // Inputs:
  488. // f factor determining color value as if 0 was min and 1 was max
  489. // Outputs:
  490. // r red value
  491. // g green value
  492. // b blue value)igl_Qu8mg5v7";
  493. const char *__doc_igl_local_basis = R"igl_Qu8mg5v7(// Compute a local orthogonal reference system for each triangle in the given mesh
  494. // Templates:
  495. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  496. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  497. // Inputs:
  498. // V eigen matrix #V by 3
  499. // F #F by 3 list of mesh faces (must be triangles)
  500. // Outputs:
  501. // B1 eigen matrix #F by 3, each vector is tangent to the triangle
  502. // B2 eigen matrix #F by 3, each vector is tangent to the triangle and perpendicular to B1
  503. // B3 eigen matrix #F by 3, normal of the triangle
  504. //
  505. // See also: adjacency_matrix)igl_Qu8mg5v7";
  506. const char *__doc_igl_lscm = R"igl_Qu8mg5v7(// Compute a Least-squares conformal map parametrization (equivalently
  507. // derived in "Intrinsic Parameterizations of Surface Meshes" [Desbrun et al.
  508. // 2002] and "Least Squares Conformal Maps for Automatic Texture Atlas
  509. // Generation" [Lévy et al. 2002]), though this implementation follows the
  510. // derivation in: "Spectral Conformal Parameterization" [Mullen et al. 2008]
  511. // (note, this does **not** implement the Eigen-decomposition based method in
  512. // [Mullen et al. 2008], which is not equivalent). Input should be a manifold
  513. // mesh (also no unreferenced vertices) and "boundary" (fixed vertices) `b`
  514. // should contain at least two vertices per connected component.
  515. //
  516. // Inputs:
  517. // V #V by 3 list of mesh vertex positions
  518. // F #F by 3 list of mesh faces (must be triangles)
  519. // b #b boundary indices into V
  520. // bc #b by 3 list of boundary values
  521. // Outputs:
  522. // UV #V by 2 list of 2D mesh vertex positions in UV space
  523. // Returns true only on solver success.
  524. //)igl_Qu8mg5v7";
  525. const char *__doc_igl_map_vertices_to_circle = R"igl_Qu8mg5v7(// Map the vertices whose indices are in a given boundary loop (bnd) on the
  526. // unit circle with spacing proportional to the original boundary edge
  527. // lengths.
  528. //
  529. // Inputs:
  530. // V #V by dim list of mesh vertex positions
  531. // b #W list of vertex ids
  532. // Outputs:
  533. // UV #W by 2 list of 2D position on the unit circle for the vertices in b)igl_Qu8mg5v7";
  534. const char *__doc_igl_massmatrix = R"igl_Qu8mg5v7(// Constructs the mass (area) matrix for a given mesh (V,F).
  535. //
  536. // Templates:
  537. // DerivedV derived type of eigen matrix for V (e.g. derived from
  538. // MatrixXd)
  539. // DerivedF derived type of eigen matrix for F (e.g. derived from
  540. // MatrixXi)
  541. // Scalar scalar type for eigen sparse matrix (e.g. double)
  542. // Inputs:
  543. // V #V by dim list of mesh vertex positions
  544. // F #F by simplex_size list of mesh faces (must be triangles)
  545. // type one of the following ints:
  546. // MASSMATRIX_TYPE_BARYCENTRIC barycentric
  547. // MASSMATRIX_TYPE_VORONOI voronoi-hybrid {default}
  548. // MASSMATRIX_TYPE_FULL full {not implemented}
  549. // Outputs:
  550. // M #V by #V mass matrix
  551. //
  552. // See also: adjacency_matrix
  553. //)igl_Qu8mg5v7";
  554. const char *__doc_igl_min_quad_with_fixed_precompute = R"igl_Qu8mg5v7(// Known Bugs: rows of Aeq **should probably** be linearly independent.
  555. // During precomputation, the rows of a Aeq are checked via QR. But in case
  556. // they're not then resulting probably will no longer be sparse: it will be
  557. // slow.
  558. //
  559. // MIN_QUAD_WITH_FIXED Minimize quadratic energy
  560. //
  561. // 0.5*Z'*A*Z + Z'*B + C with
  562. //
  563. // constraints that Z(known) = Y, optionally also subject to the constraints
  564. // Aeq*Z = Beq
  565. //
  566. // Templates:
  567. // T should be a eigen matrix primitive type like int or double
  568. // Inputs:
  569. // A n by n matrix of quadratic coefficients
  570. // known list of indices to known rows in Z
  571. // Y list of fixed values corresponding to known rows in Z
  572. // Aeq m by n list of linear equality constraint coefficients
  573. // pd flag specifying whether A(unknown,unknown) is positive definite
  574. // Outputs:
  575. // data factorization struct with all necessary information to solve
  576. // using min_quad_with_fixed_solve
  577. // Returns true on success, false on error
  578. //
  579. // Benchmark: For a harmonic solve on a mesh with 325K facets, matlab 2.2
  580. // secs, igl/min_quad_with_fixed.h 7.1 secs
  581. //)igl_Qu8mg5v7";
  582. const char *__doc_igl_min_quad_with_fixed_solve = R"igl_Qu8mg5v7(// Solves a system previously factored using min_quad_with_fixed_precompute
  583. //
  584. // Template:
  585. // T type of sparse matrix (e.g. double)
  586. // DerivedY type of Y (e.g. derived from VectorXd or MatrixXd)
  587. // DerivedZ type of Z (e.g. derived from VectorXd or MatrixXd)
  588. // Inputs:
  589. // data factorization struct with all necessary precomputation to solve
  590. // B n by 1 column of linear coefficients
  591. // Y b by 1 list of constant fixed values
  592. // Beq m by 1 list of linear equality constraint constant values
  593. // Outputs:
  594. // Z n by cols solution
  595. // sol #unknowns+#lagrange by cols solution to linear system
  596. // Returns true on success, false on error)igl_Qu8mg5v7";
  597. const char *__doc_igl_min_quad_with_fixed = R"igl_Qu8mg5v7(See min_quad_with_fixed for the documentation.)igl_Qu8mg5v7";
  598. const char *__doc_igl_n_polyvector = R"igl_Qu8mg5v7(// Inputs:
  599. // v0, v1 the two #3 by 1 vectors
  600. // normalized boolean, if false, then the vectors are normalized prior to the calculation
  601. // Output:
  602. // 3 by 3 rotation matrix that takes v0 to v1
  603. //)igl_Qu8mg5v7";
  604. const char *__doc_igl_parula = R"igl_Qu8mg5v7(// PARULA like MATLAB's parula
  605. //
  606. // Inputs:
  607. // m number of colors
  608. // Outputs:
  609. // J m by list of RGB colors between 0 and 1
  610. //
  611. // Wrapper for directly computing [r,g,b] values for a given factor f between
  612. // 0 and 1
  613. //
  614. // Inputs:
  615. // f factor determining color value as if 0 was min and 1 was max
  616. // Outputs:
  617. // r red value
  618. // g green value
  619. // b blue value)igl_Qu8mg5v7";
  620. const char *__doc_igl_per_corner_normals = R"igl_Qu8mg5v7(// Compute vertex normals via vertex position list, face list
  621. // Inputs:
  622. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  623. // F #F by 3 eigne Matrix of face (triangle) indices
  624. // corner_threshold threshold in degrees on sharp angles
  625. // Output:
  626. // CN #F*3 by 3 eigen Matrix of mesh vertex 3D normals, where the normal
  627. // for corner F(i,j) is at CN(i*3+j,:) )igl_Qu8mg5v7";
  628. const char *__doc_igl_per_edge_normals = R"igl_Qu8mg5v7(// Compute face normals via vertex position list, face list
  629. // Inputs:
  630. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  631. // F #F by 3 eigen Matrix of face (triangle) indices
  632. // weight weighting type
  633. // FN #F by 3 matrix of 3D face normals per face
  634. // Output:
  635. // N #2 by 3 matrix of mesh edge 3D normals per row
  636. // E #E by 2 matrix of edge indices per row
  637. // EMAP #E by 1 matrix of indices from all edges to E
  638. //)igl_Qu8mg5v7";
  639. const char *__doc_igl_per_face_normals = R"igl_Qu8mg5v7(// Compute face normals via vertex position list, face list
  640. // Inputs:
  641. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  642. // F #F by 3 eigen Matrix of face (triangle) indices
  643. // Z 3 vector normal given to faces with degenerate normal.
  644. // Output:
  645. // N #F by 3 eigen Matrix of mesh face (triangle) 3D normals
  646. //
  647. // Example:
  648. // // Give degenerate faces (1/3,1/3,1/3)^0.5
  649. // per_face_normals(V,F,Vector3d(1,1,1).normalized(),N);)igl_Qu8mg5v7";
  650. const char *__doc_igl_per_face_normals_stable = R"igl_Qu8mg5v7(// Special version where order of face indices is guaranteed not to effect
  651. // output.)igl_Qu8mg5v7";
  652. const char *__doc_igl_per_vertex_normals = R"igl_Qu8mg5v7(// Compute vertex normals via vertex position list, face list
  653. // Inputs:
  654. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  655. // F #F by 3 eigne Matrix of face (triangle) indices
  656. // weighting Weighting type
  657. // Output:
  658. // N #V by 3 eigen Matrix of mesh vertex 3D normals)igl_Qu8mg5v7";
  659. const char *__doc_igl_planarize_quad_mesh = R"igl_Qu8mg5v7(// Inputs:
  660. // Vin #V by 3 eigen Matrix of mesh vertex 3D positions
  661. // F #F by 4 eigen Matrix of face (quad) indices
  662. // maxIter maximum numbers of iterations
  663. // threshold minimum allowed threshold for non-planarity
  664. // Output:
  665. // Vout #V by 3 eigen Matrix of planar mesh vertex 3D positions
  666. //)igl_Qu8mg5v7";
  667. const char *__doc_igl_png_readPNG = R"igl_Qu8mg5v7(// Read an image from a .png file into 4 memory buffers
  668. //
  669. // Input:
  670. // png_file path to .png file
  671. // Output:
  672. // R,G,B,A texture channels
  673. // Returns true on success, false on failure
  674. //)igl_Qu8mg5v7";
  675. const char *__doc_igl_png_writePNG = R"igl_Qu8mg5v7(// Writes an image to a png file
  676. //
  677. // Input:
  678. // R,G,B,A texture channels
  679. // Output:
  680. // png_file path to .png file
  681. // Returns true on success, false on failure
  682. //)igl_Qu8mg5v7";
  683. const char *__doc_igl_point_mesh_squared_distance = R"igl_Qu8mg5v7(// Compute distances from a set of points P to a triangle mesh (V,F)
  684. //
  685. // Inputs:
  686. // P #P by 3 list of query point positions
  687. // V #V by 3 list of vertex positions
  688. // Ele #Ele by (3|2|1) list of (triangle|edge|point) indices
  689. // Outputs:
  690. // sqrD #P list of smallest squared distances
  691. // I #P list of primitive indices corresponding to smallest distances
  692. // C #P by 3 list of closest points
  693. //
  694. // Known bugs: This only computes distances to given primitivess. So
  695. // unreferenced vertices are ignored. However, degenerate primitives are
  696. // handled correctly: triangle [1 2 2] is treated as a segment [1 2], and
  697. // triangle [1 1 1] is treated as a point. So one _could_ add extra
  698. // combinatorially degenerate rows to Ele for all unreferenced vertices to
  699. // also get distances to points.)igl_Qu8mg5v7";
  700. const char *__doc_igl_polar_svd = R"igl_Qu8mg5v7(// Computes the polar decomposition (R,T) of a matrix A using SVD singular
  701. // value decomposition
  702. //
  703. // Inputs:
  704. // A 3 by 3 matrix to be decomposed
  705. // Outputs:
  706. // R 3 by 3 rotation matrix part of decomposition (**always rotataion**)
  707. // T 3 by 3 stretch matrix part of decomposition
  708. // U 3 by 3 left-singular vectors
  709. // S 3 by 1 singular values
  710. // V 3 by 3 right-singular vectors
  711. //
  712. //)igl_Qu8mg5v7";
  713. const char *__doc_igl_principal_curvature = R"igl_Qu8mg5v7(// Compute the principal curvature directions and magnitude of the given triangle mesh
  714. // DerivedV derived from vertex positions matrix type: i.e. MatrixXd
  715. // DerivedF derived from face indices matrix type: i.e. MatrixXi
  716. // Inputs:
  717. // V eigen matrix #V by 3
  718. // F #F by 3 list of mesh faces (must be triangles)
  719. // radius controls the size of the neighbourhood used, 1 = average edge lenght
  720. //
  721. // Outputs:
  722. // PD1 #V by 3 maximal curvature direction for each vertex.
  723. // PD2 #V by 3 minimal curvature direction for each vertex.
  724. // PV1 #V by 1 maximal curvature value for each vertex.
  725. // PV2 #V by 1 minimal curvature value for each vertex.
  726. //
  727. // See also: average_onto_faces, average_onto_vertices
  728. //
  729. // This function has been developed by: Nikolas De Giorgis, Luigi Rocca and Enrico Puppo.
  730. // The algorithm is based on:
  731. // Efficient Multi-scale Curvature and Crease Estimation
  732. // Daniele Panozzo, Enrico Puppo, Luigi Rocca
  733. // GraVisMa, 2010)igl_Qu8mg5v7";
  734. const char *__doc_igl_quad_planarity = R"igl_Qu8mg5v7(// Compute planarity of the faces of a quad mesh
  735. // Inputs:
  736. // V #V by 3 eigen Matrix of mesh vertex 3D positions
  737. // F #F by 4 eigen Matrix of face (quad) indices
  738. // Output:
  739. // P #F by 1 eigen Matrix of mesh face (quad) planarities
  740. //)igl_Qu8mg5v7";
  741. const char *__doc_igl_readDMAT = R"igl_Qu8mg5v7(See readDMAT for the documentation.)igl_Qu8mg5v7";
  742. const char *__doc_igl_readMESH = R"igl_Qu8mg5v7(// load a tetrahedral volume mesh from a .mesh file
  743. //
  744. // Templates:
  745. // Scalar type for positions and vectors (will be read as double and cast
  746. // to Scalar)
  747. // Index type for indices (will be read as int and cast to Index)
  748. // Input:
  749. // mesh_file_name path of .mesh file
  750. // Outputs:
  751. // V double matrix of vertex positions #V by 3
  752. // T #T list of tet indices into vertex positions
  753. // F #F list of face indices into vertex positions
  754. //
  755. // Known bugs: Holes and regions are not supported)igl_Qu8mg5v7";
  756. const char *__doc_igl_readOBJ = R"igl_Qu8mg5v7(// Read a mesh from an ascii obj file, filling in vertex positions, normals
  757. // and texture coordinates. Mesh may have faces of any number of degree
  758. //
  759. // Templates:
  760. // Scalar type for positions and vectors (will be read as double and cast
  761. // to Scalar)
  762. // Index type for indices (will be read as int and cast to Index)
  763. // Inputs:
  764. // str path to .obj file
  765. // Outputs:
  766. // V double matrix of vertex positions #V by 3
  767. // TC double matrix of texture coordinats #TC by 2
  768. // N double matrix of corner normals #N by 3
  769. // F #F list of face indices into vertex positions
  770. // FTC #F list of face indices into vertex texture coordinates
  771. // FN #F list of face indices into vertex normals
  772. // Returns true on success, false on errors)igl_Qu8mg5v7";
  773. const char *__doc_igl_readOFF = R"igl_Qu8mg5v7(// Read a mesh from an ascii obj file, filling in vertex positions, normals
  774. // and texture coordinates. Mesh may have faces of any number of degree
  775. //
  776. // Templates:
  777. // Scalar type for positions and vectors (will be read as double and cast
  778. // to Scalar)
  779. // Index type for indices (will be read as int and cast to Index)
  780. // Inputs:
  781. // str path to .obj file
  782. // Outputs:
  783. // V double matrix of vertex positions #V by 3
  784. // F #F list of face indices into vertex positions
  785. // TC double matrix of texture coordinats #TC by 2
  786. // FTC #F list of face indices into vertex texture coordinates
  787. // N double matrix of corner normals #N by 3
  788. // FN #F list of face indices into vertex normals
  789. // Returns true on success, false on errors)igl_Qu8mg5v7";
  790. const char *__doc_igl_read_triangle_mesh = R"igl_Qu8mg5v7(// read mesh from an ascii file with automatic detection of file format.
  791. // supported: obj, off, stl, wrl, ply, mesh)
  792. //
  793. // Templates:
  794. // Scalar type for positions and vectors (will be read as double and cast
  795. // to Scalar)
  796. // Index type for indices (will be read as int and cast to Index)
  797. // Inputs:
  798. // str path to file
  799. // Outputs:
  800. // V eigen double matrix #V by 3
  801. // F eigen int matrix #F by 3
  802. // Returns true iff success)igl_Qu8mg5v7";
  803. const char *__doc_igl_rotate_vectors = R"igl_Qu8mg5v7(// Rotate the vectors V by A radiants on the tangent plane spanned by B1 and
  804. // B2
  805. //
  806. // Inputs:
  807. // V #V by 3 eigen Matrix of vectors
  808. // A #V eigen vector of rotation angles or a single angle to be applied
  809. // to all vectors
  810. // B1 #V by 3 eigen Matrix of base vector 1
  811. // B2 #V by 3 eigen Matrix of base vector 2
  812. //
  813. // Output:
  814. // Returns the rotated vectors
  815. //)igl_Qu8mg5v7";
  816. const char *__doc_igl_setdiff = R"igl_Qu8mg5v7(// Set difference of elements of matrices
  817. //
  818. // Inputs:
  819. // A m-long vector of indices
  820. // B n-long vector of indices
  821. // Outputs:
  822. // C (k<=m)-long vector of unique elements appearing in A but not in B
  823. // IA (k<=m)-long list of indices into A so that C = A(IA)
  824. //)igl_Qu8mg5v7";
  825. const char *__doc_igl_signed_distance = R"igl_Qu8mg5v7(// Computes signed distance to a mesh
  826. //
  827. // Inputs:
  828. // P #P by 3 list of query point positions
  829. // V #V by 3 list of vertex positions
  830. // F #F by ss list of triangle indices, ss should be 3 unless sign_type ==
  831. // SIGNED_DISTANCE_TYPE_UNSIGNED
  832. // sign_type method for computing distance _sign_ S
  833. // Outputs:
  834. // S #P list of smallest signed distances
  835. // I #P list of facet indices corresponding to smallest distances
  836. // C #P by 3 list of closest points
  837. // N #P by 3 list of closest normals (only set if
  838. // sign_type=SIGNED_DISTANCE_TYPE_PSEUDONORMAL)
  839. //
  840. // Known bugs: This only computes distances to triangles. So unreferenced
  841. // vertices and degenerate triangles are ignored.)igl_Qu8mg5v7";
  842. const char *__doc_igl_signed_distance_pseudonormal = R"igl_Qu8mg5v7(// Computes signed distance to mesh
  843. //
  844. // Inputs:
  845. // tree AABB acceleration tree (see AABB.h)
  846. // F #F by 3 list of triangle indices
  847. // FN #F by 3 list of triangle normals
  848. // VN #V by 3 list of vertex normals (ANGLE WEIGHTING)
  849. // EN #E by 3 list of edge normals (UNIFORM WEIGHTING)
  850. // EMAP #F*3 mapping edges in F to E
  851. // q Query point
  852. // Returns signed distance to mesh
  853. //)igl_Qu8mg5v7";
  854. const char *__doc_igl_signed_distance_winding_number = R"igl_Qu8mg5v7(// Inputs:
  855. // tree AABB acceleration tree (see cgal/point_mesh_squared_distance.h)
  856. // hier Winding number evaluation hierarchy
  857. // q Query point
  858. // Returns signed distance to mesh)igl_Qu8mg5v7";
  859. const char *__doc_igl_slice = R"igl_Qu8mg5v7(// Act like the matlab X(row_indices,col_indices) operator, where
  860. // row_indices, col_indices are non-negative integer indices.
  861. //
  862. // Inputs:
  863. // X m by n matrix
  864. // R list of row indices
  865. // C list of column indices
  866. // Output:
  867. // Y #R by #C matrix
  868. //
  869. // See also: slice_mask)igl_Qu8mg5v7";
  870. const char *__doc_igl_slice_into = R"igl_Qu8mg5v7(// Act like the matlab Y(row_indices,col_indices) = X
  871. //
  872. // Inputs:
  873. // X xm by xn rhs matrix
  874. // R list of row indices
  875. // C list of column indices
  876. // Y ym by yn lhs matrix
  877. // Output:
  878. // Y ym by yn lhs matrix, same as input but Y(R,C) = X)igl_Qu8mg5v7";
  879. const char *__doc_igl_slice_mask = R"igl_Qu8mg5v7(// Act like the matlab X(row_mask,col_mask) operator, where
  880. // row_mask, col_mask are non-negative integer indices.
  881. //
  882. // Inputs:
  883. // X m by n matrix
  884. // R m list of row bools
  885. // C n list of column bools
  886. // Output:
  887. // Y #trues-in-R by #trues-in-C matrix
  888. //
  889. // See also: slice_mask)igl_Qu8mg5v7";
  890. const char *__doc_igl_slice_tets = R"igl_Qu8mg5v7(// SLICE_TETS Slice through a tet mesh (V,T) along a given plane (via its
  891. // implicit equation).
  892. //
  893. // Inputs:
  894. // V #V by 3 list of tet mesh vertices
  895. // T #T by 4 list of tet indices into V
  896. // plane list of 4 coefficients in the plane equation: [x y z 1]'*plane = 0
  897. // Optional:
  898. // 'Manifold' followed by whether to stitch together triangles into a
  899. // manifold mesh {true}: results in more compact U but slightly slower.
  900. // Outputs:
  901. // U #U by 3 list of triangle mesh vertices along slice
  902. // G #G by 3 list of triangles indices into U
  903. // J #G list of indices into T revealing from which tet each faces comes
  904. // BC #U by #V list of barycentric coordinates (or more generally: linear
  905. // interpolation coordinates) so that U = BC*V
  906. // )igl_Qu8mg5v7";
  907. const char *__doc_igl_sortrows = R"igl_Qu8mg5v7(// Act like matlab's [Y,I] = sortrows(X)
  908. //
  909. // Templates:
  910. // DerivedX derived scalar type, e.g. MatrixXi or MatrixXd
  911. // DerivedI derived integer type, e.g. MatrixXi
  912. // Inputs:
  913. // X m by n matrix whose entries are to be sorted
  914. // ascending sort ascending (true, matlab default) or descending (false)
  915. // Outputs:
  916. // Y m by n matrix whose entries are sorted (**should not** be same
  917. // reference as X)
  918. // I m list of indices so that
  919. // Y = X(I,:);)igl_Qu8mg5v7";
  920. const char *__doc_igl_triangle_triangulate = R"igl_Qu8mg5v7(// Triangulate the interior of a polygon using the triangle library.
  921. //
  922. // Inputs:
  923. // V #V by 2 list of 2D vertex positions
  924. // E #E by 2 list of vertex ids forming unoriented edges of the boundary of the polygon
  925. // H #H by 2 coordinates of points contained inside holes of the polygon
  926. // flags string of options pass to triangle (see triangle documentation)
  927. // Outputs:
  928. // V2 #V2 by 2 coordinates of the vertives of the generated triangulation
  929. // F2 #F2 by 3 list of indices forming the faces of the generated triangulation
  930. //
  931. // TODO: expose the option to prevent Steiner points on the boundary
  932. //)igl_Qu8mg5v7";
  933. const char *__doc_igl_unique = R"igl_Qu8mg5v7(// Act like matlab's [C,IA,IC] = unique(X)
  934. //
  935. // Templates:
  936. // T comparable type T
  937. // Inputs:
  938. // A #A vector of type T
  939. // Outputs:
  940. // C #C vector of unique entries in A
  941. // IA #C index vector so that C = A(IA);
  942. // IC #A index vector so that A = C(IC);)igl_Qu8mg5v7";
  943. const char *__doc_igl_unique_rows = R"igl_Qu8mg5v7(// Act like matlab's [C,IA,IC] = unique(X,'rows')
  944. //
  945. // Templates:
  946. // DerivedA derived scalar type, e.g. MatrixXi or MatrixXd
  947. // DerivedIA derived integer type, e.g. MatrixXi
  948. // DerivedIC derived integer type, e.g. MatrixXi
  949. // Inputs:
  950. // A m by n matrix whose entries are to unique'd according to rows
  951. // Outputs:
  952. // C #C vector of unique rows in A
  953. // IA #C index vector so that C = A(IA,:);
  954. // IC #A index vector so that A = C(IC,:);)igl_Qu8mg5v7";
  955. const char *__doc_igl_unproject_onto_mesh = R"igl_Qu8mg5v7(// Unproject a screen location (using current opengl viewport, projection, and
  956. // model view) to a 3D position _onto_ a given mesh, if the ray through the
  957. // given screen location (x,y) _hits_ the mesh.
  958. //
  959. // Inputs:
  960. // pos screen space coordinates
  961. // model model matrix
  962. // proj projection matrix
  963. // viewport vieweport vector
  964. // V #V by 3 list of mesh vertex positions
  965. // F #F by 3 list of mesh triangle indices into V
  966. // Outputs:
  967. // fid id of the first face hit
  968. // bc barycentric coordinates of hit
  969. // Returns true if there's a hit)igl_Qu8mg5v7";
  970. const char *__doc_igl_upsample = R"igl_Qu8mg5v7(// Subdivide a mesh without moving vertices: loop subdivision but odd
  971. // vertices stay put and even vertices are just edge midpoints
  972. //
  973. // Templates:
  974. // MatV matrix for vertex positions, e.g. MatrixXd
  975. // MatF matrix for vertex positions, e.g. MatrixXi
  976. // Inputs:
  977. // V #V by dim mesh vertices
  978. // F #F by 3 mesh triangles
  979. // Outputs:
  980. // NV new vertex positions, V is guaranteed to be at top
  981. // NF new list of face indices
  982. //
  983. // NOTE: V should not be the same as NV,
  984. // NOTE: F should not be the same as NF, use other proto
  985. //
  986. // Known issues:
  987. // - assumes (V,F) is edge-manifold.)igl_Qu8mg5v7";
  988. const char *__doc_igl_winding_number = R"igl_Qu8mg5v7(// WINDING_NUMBER Compute the sum of solid angles of a triangle/tetrahedron
  989. // described by points (vectors) V
  990. //
  991. // Templates:
  992. // dim dimension of input
  993. // Inputs:
  994. // V n by 3 list of vertex positions
  995. // F #F by 3 list of triangle indices, minimum index is 0
  996. // O no by 3 list of origin positions
  997. // Outputs:
  998. // S no by 1 list of winding numbers
  999. //
  1000. // 3d)igl_Qu8mg5v7";
  1001. const char *__doc_igl_winding_number_3 = R"igl_Qu8mg5v7(// Inputs:
  1002. // V pointer to array containing #V by 3 vertex positions along rows,
  1003. // given in column major order
  1004. // n number of mesh vertices
  1005. // F pointer to array containing #F by 3 face indices along rows,
  1006. // given in column major order
  1007. // m number of faces
  1008. // O pointer to array containing #O by 3 query positions along rows,
  1009. // given in column major order
  1010. // no number of origins
  1011. // Outputs:
  1012. // S no by 1 list of winding numbers)igl_Qu8mg5v7";
  1013. const char *__doc_igl_winding_number_2 = R"igl_Qu8mg5v7(//// Only one evaluation origin
  1014. //template <typename DerivedF>
  1015. //IGL_INLINE void winding_number_3(
  1016. // const double * V,
  1017. // const int n,
  1018. // const DerivedF * F,
  1019. // const int m,
  1020. // const double * O,
  1021. // double * S);
  1022. // 2d)igl_Qu8mg5v7";
  1023. const char *__doc_igl_writeMESH = R"igl_Qu8mg5v7(// save a tetrahedral volume mesh to a .mesh file
  1024. //
  1025. // Templates:
  1026. // Scalar type for positions and vectors (will be cast as double)
  1027. // Index type for indices (will be cast to int)
  1028. // Input:
  1029. // mesh_file_name path of .mesh file
  1030. // V double matrix of vertex positions #V by 3
  1031. // T #T list of tet indices into vertex positions
  1032. // F #F list of face indices into vertex positions
  1033. //
  1034. // Known bugs: Holes and regions are not supported)igl_Qu8mg5v7";
  1035. const char *__doc_igl_writeOBJ = R"igl_Qu8mg5v7(// Write a mesh in an ascii obj file
  1036. // Inputs:
  1037. // str path to outputfile
  1038. // V #V by 3 mesh vertex positions
  1039. // F #F by 3|4 mesh indices into V
  1040. // CN #CN by 3 normal vectors
  1041. // FN #F by 3|4 corner normal indices into CN
  1042. // TC #TC by 2|3 texture coordinates
  1043. // FTC #F by 3|4 corner texture coord indices into TC
  1044. // Returns true on success, false on error)igl_Qu8mg5v7";