minkowski_sum.cpp 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394
  1. // This file is part of libigl, a simple c++ geometry processing library.
  2. //
  3. // Copyright (C) 2016 Alec Jacobson <alecjacobson@gmail.com>
  4. //
  5. // This Source Code Form is subject to the terms of the Mozilla Public License
  6. // v. 2.0. If a copy of the MPL was not distributed with this file, You can
  7. // obtain one at http://mozilla.org/MPL/2.0/.
  8. #include "minkowski_sum.h"
  9. #include "mesh_boolean.h"
  10. #include "../../slice.h"
  11. #include "../../slice_mask.h"
  12. #include "../../LinSpaced.h"
  13. #include "../../unique_rows.h"
  14. #include "../../get_seconds.h"
  15. #include "../../edges.h"
  16. #include <CGAL/Exact_predicates_exact_constructions_kernel.h>
  17. #include <cassert>
  18. #include <vector>
  19. #include <iostream>
  20. template <
  21. typename DerivedVA,
  22. typename DerivedFA,
  23. typename DerivedVB,
  24. typename DerivedFB,
  25. typename DerivedW,
  26. typename DerivedG,
  27. typename DerivedJ>
  28. IGL_INLINE void igl::copyleft::cgal::minkowski_sum(
  29. const Eigen::MatrixBase<DerivedVA> & VA,
  30. const Eigen::MatrixBase<DerivedFA> & FA,
  31. const Eigen::MatrixBase<DerivedVB> & VB,
  32. const Eigen::MatrixBase<DerivedFB> & FB,
  33. const bool resolve_overlaps,
  34. Eigen::PlainObjectBase<DerivedW> & W,
  35. Eigen::PlainObjectBase<DerivedG> & G,
  36. Eigen::PlainObjectBase<DerivedJ> & J)
  37. {
  38. using namespace std;
  39. using namespace Eigen;
  40. assert(FA.cols() == 3 && "FA must contain a closed triangle mesh");
  41. assert(FB.cols() <= FA.cols() &&
  42. "FB must contain lower diemnsional simplices than FA");
  43. const auto tictoc = []()->double
  44. {
  45. static double t_start;
  46. double now = igl::get_seconds();
  47. double interval = now-t_start;
  48. t_start = now;
  49. return interval;
  50. };
  51. tictoc();
  52. Matrix<typename DerivedFB::Scalar,Dynamic,2> EB;
  53. edges(FB,EB);
  54. Matrix<typename DerivedFA::Scalar,Dynamic,2> EA(0,2);
  55. if(FB.cols() == 3)
  56. {
  57. edges(FA,EA);
  58. }
  59. // number of copies of A along edges of B
  60. const int n_ab = EB.rows();
  61. // number of copies of B along edges of A
  62. const int n_ba = EA.rows();
  63. vector<DerivedW> vW(n_ab + n_ba);
  64. vector<DerivedG> vG(n_ab + n_ba);
  65. vector<DerivedJ> vJ(n_ab + n_ba);
  66. vector<int> offsets(n_ab + n_ba + 1);
  67. offsets[0] = 0;
  68. // sweep A along edges of B
  69. for(int e = 0;e<n_ab;e++)
  70. {
  71. Matrix<typename DerivedJ::Scalar,Dynamic,1> eJ;
  72. minkowski_sum(
  73. VA,
  74. FA,
  75. VB.row(EB(e,0)).eval(),
  76. VB.row(EB(e,1)).eval(),
  77. false,
  78. vW[e],
  79. vG[e],
  80. eJ);
  81. assert(vG[e].rows() == eJ.rows());
  82. assert(eJ.cols() == 1);
  83. vJ[e].resize(vG[e].rows(),2);
  84. vJ[e].col(0) = eJ;
  85. vJ[e].col(1).setConstant(e);
  86. offsets[e+1] = offsets[e] + vW[e].rows();
  87. }
  88. // sweep B along edges of A
  89. for(int e = 0;e<n_ba;e++)
  90. {
  91. Matrix<typename DerivedJ::Scalar,Dynamic,1> eJ;
  92. const int ee = n_ab+e;
  93. minkowski_sum(
  94. VB,
  95. FB,
  96. VA.row(EA(e,0)).eval(),
  97. VA.row(EA(e,1)).eval(),
  98. false,
  99. vW[ee],
  100. vG[ee],
  101. eJ);
  102. vJ[ee].resize(vG[ee].rows(),2);
  103. vJ[ee].col(0) = eJ.array() + (FA.rows()+1);
  104. vJ[ee].col(1).setConstant(ee);
  105. }
  106. // Combine meshes
  107. int n=0,m=0;
  108. for_each(vW.begin(),vW.end(),[&n](const DerivedW & w){n+=w.rows();});
  109. for_each(vG.begin(),vG.end(),[&m](const DerivedG & g){m+=g.rows();});
  110. assert(n == offsets.back());
  111. W.resize(n,3);
  112. G.resize(m,3);
  113. J.resize(m,2);
  114. {
  115. int m_off = 0,n_off = 0;
  116. for(int i = 0;i<vG.size();i++)
  117. {
  118. W.block(n_off,0,vW[i].rows(),3) = vW[i];
  119. G.block(m_off,0,vG[i].rows(),3) = vG[i].array()+offsets[i];
  120. J.block(m_off,0,vJ[i].rows(),2) = vJ[i];
  121. n_off += vW[i].rows();
  122. m_off += vG[i].rows();
  123. }
  124. assert(n == n_off);
  125. assert(m == m_off);
  126. }
  127. if(resolve_overlaps)
  128. {
  129. Eigen::Matrix<typename DerivedJ::Scalar, Eigen::Dynamic,1> SJ;
  130. mesh_boolean(
  131. DerivedW(W),
  132. DerivedG(G),
  133. Matrix<typename DerivedW::Scalar,Dynamic,Dynamic>(),
  134. Matrix<typename DerivedG::Scalar,Dynamic,Dynamic>(),
  135. MESH_BOOLEAN_TYPE_UNION,
  136. W,
  137. G,
  138. SJ);
  139. J = slice(DerivedJ(J),SJ,1);
  140. }
  141. }
  142. template <
  143. typename DerivedVA,
  144. typename DerivedFA,
  145. typename sType, int sCols, int sOptions,
  146. typename dType, int dCols, int dOptions,
  147. typename DerivedW,
  148. typename DerivedG,
  149. typename DerivedJ>
  150. IGL_INLINE void igl::copyleft::cgal::minkowski_sum(
  151. const Eigen::MatrixBase<DerivedVA> & VA,
  152. const Eigen::MatrixBase<DerivedFA> & FA,
  153. const Eigen::Matrix<sType,1,sCols,sOptions> & s,
  154. const Eigen::Matrix<dType,1,dCols,dOptions> & d,
  155. const bool resolve_overlaps,
  156. Eigen::PlainObjectBase<DerivedW> & W,
  157. Eigen::PlainObjectBase<DerivedG> & G,
  158. Eigen::PlainObjectBase<DerivedJ> & J)
  159. {
  160. using namespace Eigen;
  161. using namespace std;
  162. assert(s.cols() == 3 && "s should be a 3d point");
  163. assert(d.cols() == 3 && "d should be a 3d point");
  164. // silly base case
  165. if(FA.size() == 0)
  166. {
  167. W.resize(0,3);
  168. G.resize(0,3);
  169. return;
  170. }
  171. const int dim = VA.cols();
  172. assert(dim == 3 && "dim must be 3D");
  173. assert(s.size() == 3 && "s must be 3D point");
  174. assert(d.size() == 3 && "d must be 3D point");
  175. // segment vector
  176. const CGAL::Vector_3<CGAL::Epeck> v(d(0)-s(0),d(1)-s(1),d(2)-s(2));
  177. // number of vertices
  178. const int n = VA.rows();
  179. // duplicate vertices at s and d, we'll remove unreferernced later
  180. W.resize(2*n,dim);
  181. for(int i = 0;i<n;i++)
  182. {
  183. for(int j = 0;j<dim;j++)
  184. {
  185. W (i,j) = VA(i,j) + s(j);
  186. W(i+n,j) = VA(i,j) + d(j);
  187. }
  188. }
  189. // number of faces
  190. const int m = FA.rows();
  191. //// Mask whether positive dot product, or negative: because of exactly zero,
  192. //// these are not necessarily complementary
  193. // Nevermind, actually P = !N
  194. Matrix<bool,Dynamic,1> P(m,1),N(m,1);
  195. // loop over faces
  196. int mp = 0,mn = 0;
  197. for(int f = 0;f<m;f++)
  198. {
  199. const CGAL::Plane_3<CGAL::Epeck> plane(
  200. CGAL::Point_3<CGAL::Epeck>(VA(FA(f,0),0),VA(FA(f,0),1),VA(FA(f,0),2)),
  201. CGAL::Point_3<CGAL::Epeck>(VA(FA(f,1),0),VA(FA(f,1),1),VA(FA(f,1),2)),
  202. CGAL::Point_3<CGAL::Epeck>(VA(FA(f,2),0),VA(FA(f,2),1),VA(FA(f,2),2)));
  203. const auto normal = plane.orthogonal_vector();
  204. const auto dt = normal * v;
  205. if(dt > 0)
  206. {
  207. P(f) = true;
  208. N(f) = false;
  209. mp++;
  210. }else
  211. //}else if(dt < 0)
  212. {
  213. P(f) = false;
  214. N(f) = true;
  215. mn++;
  216. //}else
  217. //{
  218. // P(f) = false;
  219. // N(f) = false;
  220. }
  221. }
  222. typedef Matrix<typename DerivedG::Scalar,Dynamic,Dynamic> MatrixXI;
  223. typedef Matrix<typename DerivedG::Scalar,Dynamic,1> VectorXI;
  224. MatrixXI GT(mp+mn,3);
  225. GT<< slice_mask(FA,N,1), slice_mask((FA.array()+n).eval(),P,1);
  226. // J indexes FA for parts at s and m+FA for parts at d
  227. J.derived() = igl::LinSpaced<DerivedJ >(m,0,m-1);
  228. DerivedJ JT(mp+mn);
  229. JT << slice_mask(J,P,1), slice_mask(J,N,1);
  230. JT.block(mp,0,mn,1).array()+=m;
  231. // Original non-co-planar faces with positively oriented reversed
  232. MatrixXI BA(mp+mn,3);
  233. BA << slice_mask(FA,P,1).rowwise().reverse(), slice_mask(FA,N,1);
  234. // Quads along **all** sides
  235. MatrixXI GQ((mp+mn)*3,4);
  236. GQ<<
  237. BA.col(1), BA.col(0), BA.col(0).array()+n, BA.col(1).array()+n,
  238. BA.col(2), BA.col(1), BA.col(1).array()+n, BA.col(2).array()+n,
  239. BA.col(0), BA.col(2), BA.col(2).array()+n, BA.col(0).array()+n;
  240. MatrixXI uGQ;
  241. VectorXI S,sI,sJ;
  242. // Inputs:
  243. // F #F by d list of polygons
  244. // Outputs:
  245. // S #uF list of signed incidences for each unique face
  246. // uF #uF by d list of unique faces
  247. // I #uF index vector so that uF = sort(F,2)(I,:)
  248. // J #F index vector so that sort(F,2) = uF(J,:)
  249. [](
  250. const MatrixXI & F,
  251. VectorXI & S,
  252. MatrixXI & uF,
  253. VectorXI & I,
  254. VectorXI & J)
  255. {
  256. const int m = F.rows();
  257. const int d = F.cols();
  258. MatrixXI sF = F;
  259. const auto MN = sF.rowwise().minCoeff().eval();
  260. // rotate until smallest index is first
  261. for(int p = 0;p<d;p++)
  262. {
  263. for(int f = 0;f<m;f++)
  264. {
  265. if(sF(f,0) != MN(f))
  266. {
  267. for(int r = 0;r<d-1;r++)
  268. {
  269. std::swap(sF(f,r),sF(f,r+1));
  270. }
  271. }
  272. }
  273. }
  274. // swap orienation so that last index is greater than first
  275. for(int f = 0;f<m;f++)
  276. {
  277. if(sF(f,d-1) < sF(f,1))
  278. {
  279. sF.block(f,1,1,d-1) = sF.block(f,1,1,d-1).reverse().eval();
  280. }
  281. }
  282. Matrix<bool,Dynamic,1> M = Matrix<bool,Dynamic,1>::Zero(m,1);
  283. {
  284. VectorXI P = igl::LinSpaced<VectorXI >(d,0,d-1);
  285. for(int p = 0;p<d;p++)
  286. {
  287. for(int f = 0;f<m;f++)
  288. {
  289. bool all = true;
  290. for(int r = 0;r<d;r++)
  291. {
  292. all = all && (sF(f,P(r)) == F(f,r));
  293. }
  294. M(f) = M(f) || all;
  295. }
  296. for(int r = 0;r<d-1;r++)
  297. {
  298. std::swap(P(r),P(r+1));
  299. }
  300. }
  301. }
  302. unique_rows(sF,uF,I,J);
  303. S = VectorXI::Zero(uF.rows(),1);
  304. assert(m == J.rows());
  305. for(int f = 0;f<m;f++)
  306. {
  307. S(J(f)) += M(f) ? 1 : -1;
  308. }
  309. }(MatrixXI(GQ),S,uGQ,sI,sJ);
  310. assert(S.rows() == uGQ.rows());
  311. const int nq = (S.array().abs()==2).count();
  312. GQ.resize(nq,4);
  313. {
  314. int k = 0;
  315. for(int q = 0;q<uGQ.rows();q++)
  316. {
  317. switch(S(q))
  318. {
  319. case -2:
  320. GQ.row(k++) = uGQ.row(q).reverse().eval();
  321. break;
  322. case 2:
  323. GQ.row(k++) = uGQ.row(q);
  324. break;
  325. default:
  326. // do not add
  327. break;
  328. }
  329. }
  330. assert(nq == k);
  331. }
  332. G.resize(GT.rows()+2*GQ.rows(),3);
  333. G<<
  334. GT,
  335. GQ.col(0), GQ.col(1), GQ.col(2),
  336. GQ.col(0), GQ.col(2), GQ.col(3);
  337. J.resize(JT.rows()+2*GQ.rows(),1);
  338. J<<JT,DerivedJ::Constant(2*GQ.rows(),1,2*m+1);
  339. if(resolve_overlaps)
  340. {
  341. Eigen::Matrix<typename DerivedJ::Scalar, Eigen::Dynamic,1> SJ;
  342. mesh_boolean(
  343. DerivedW(W),DerivedG(G),
  344. Matrix<typename DerivedVA::Scalar,Dynamic,Dynamic>(),MatrixXI(),
  345. MESH_BOOLEAN_TYPE_UNION,
  346. W,G,SJ);
  347. J.derived() = slice(DerivedJ(J),SJ,1);
  348. }
  349. }
  350. template <
  351. typename DerivedVA,
  352. typename DerivedFA,
  353. typename sType, int sCols, int sOptions,
  354. typename dType, int dCols, int dOptions,
  355. typename DerivedW,
  356. typename DerivedG,
  357. typename DerivedJ>
  358. IGL_INLINE void igl::copyleft::cgal::minkowski_sum(
  359. const Eigen::MatrixBase<DerivedVA> & VA,
  360. const Eigen::MatrixBase<DerivedFA> & FA,
  361. const Eigen::Matrix<sType,1,sCols,sOptions> & s,
  362. const Eigen::Matrix<dType,1,dCols,dOptions> & d,
  363. Eigen::PlainObjectBase<DerivedW> & W,
  364. Eigen::PlainObjectBase<DerivedG> & G,
  365. Eigen::PlainObjectBase<DerivedJ> & J)
  366. {
  367. return minkowski_sum(VA,FA,s,d,true,W,G,J);
  368. }
  369. #ifdef IGL_STATIC_LIBRARY
  370. // Explicit template instantiation
  371. // generated by autoexplicit.sh
  372. template void igl::copyleft::cgal::minkowski_sum<Eigen::Matrix<CGAL::Lazy_exact_nt<CGAL::Gmpq>, -1, -1, 1, -1, -1>, Eigen::Matrix<int, -1, 3, 1, -1, 3>, CGAL::Lazy_exact_nt<CGAL::Gmpq>, 3, 1, CGAL::Lazy_exact_nt<CGAL::Gmpq>, 3, 1, Eigen::Matrix<CGAL::Lazy_exact_nt<CGAL::Gmpq>, -1, -1, 1, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 1, 0, -1, 1> >(Eigen::MatrixBase<Eigen::Matrix<CGAL::Lazy_exact_nt<CGAL::Gmpq>, -1, -1, 1, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 3, 1, -1, 3> > const&, Eigen::Matrix<CGAL::Lazy_exact_nt<CGAL::Gmpq>, 1, 3, 1, 1, 3> const&, Eigen::Matrix<CGAL::Lazy_exact_nt<CGAL::Gmpq>, 1, 3, 1, 1, 3> const&, bool, Eigen::PlainObjectBase<Eigen::Matrix<CGAL::Lazy_exact_nt<CGAL::Gmpq>, -1, -1, 1, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> >&);
  373. // generated by autoexplicit.sh
  374. template void igl::copyleft::cgal::minkowski_sum<
  375. Eigen::Matrix<float, -1, 3, 1, -1, 3>,
  376. Eigen::Matrix<int, -1, 3, 1, -1, 3>,
  377. double, 3, 1,
  378. float, 3, 1,
  379. Eigen::Matrix<CGAL::Lazy_exact_nt<CGAL::Gmpq>, -1, -1, 1, -1, -1>,
  380. Eigen::Matrix<int, -1, -1, 0, -1, -1>,
  381. Eigen::Matrix<int, -1, 1, 0, -1, 1> >(Eigen::MatrixBase<Eigen::Matrix<float, -1, 3, 1, -1, 3> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 3, 1, -1, 3> > const&, Eigen::Matrix<double, 1, 3, 1, 1, 3> const&, Eigen::Matrix<float, 1, 3, 1, 1, 3> const&, bool, Eigen::PlainObjectBase<Eigen::Matrix<CGAL::Lazy_exact_nt<CGAL::Gmpq>, -1, -1, 1, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> >&);
  382. #endif