507_PolyVectorField.py 2.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126
  1. import igl
  2. import random
  3. from math import cos,sin,pi
  4. # Input mesh
  5. V = igl.eigen.MatrixXd()
  6. F = igl.eigen.MatrixXi()
  7. # Per face bases
  8. B1 = igl.eigen.MatrixXd()
  9. B2 = igl.eigen.MatrixXd()
  10. B3 = igl.eigen.MatrixXd()
  11. # Face barycenters
  12. B = igl.eigen.MatrixXd()
  13. # Scale for visualizing the fields
  14. global_scale = 1
  15. # Random length factor
  16. rand_factor = 5
  17. samples = igl.eigen.MatrixXi()
  18. def readSamples(fname):
  19. samples = igl.eigen.MatrixXi()
  20. numSamples = 0
  21. fp = open(fname, 'r')
  22. numSamples = int(fp.readline())
  23. samples.resize(numSamples,1)
  24. for i in range(0,numSamples):
  25. samples[i] = int(fp.readline())
  26. fp.close()
  27. return samples
  28. # Create a random set of tangent vectors
  29. def random_constraints(b1, b2, n):
  30. r = igl.eigen.MatrixXd(1,n*3)
  31. for i in range(0,n):
  32. a = random.random()*2*pi
  33. s = 1 + random.random() * rand_factor
  34. t = s * (cos(a) * b1 + sin(a) * b2)
  35. r.setBlock(0,i*3,1,3,t)
  36. return r
  37. def key_down(viewer, key, modifier):
  38. if key < ord('1') or key > ord('8'):
  39. return False
  40. viewer.data.lines.resize(0,9)
  41. num = key - ord('0')
  42. # Interpolate
  43. print("Interpolating " + repr(num * 2) + "-PolyVector field")
  44. b = igl.eigen.MatrixXi([[4550, 2321, 5413, 5350]]).transpose()
  45. bc = igl.eigen.MatrixXd(b.size(),num*3)
  46. for i in range(0,b.size()):
  47. t = random_constraints(B1.row(b[i]),B2.row(b[i]),num)
  48. bc.setRow(i,t)
  49. # Interpolated PolyVector field
  50. pvf = igl.eigen.MatrixXd()
  51. igl.n_polyvector(V, F, b, bc, pvf)
  52. # Highlight in red the constrained faces
  53. C = igl.eigen.MatrixXd.Constant(F.rows(),3,1)
  54. for i in range(0,b.size()):
  55. C.setRow(b[i],igl.eigen.MatrixXd([[1, 0, 0]]))
  56. viewer.data.set_colors(C)
  57. for n in range(0,num):
  58. VF = igl.eigen.MatrixXd.Zero(F.rows(),3)
  59. for i in range(0,b.size()):
  60. VF.setRow(b[i],bc.block(i,n*3,1,3))
  61. for i in range(0,samples.rows()):
  62. VF.setRow(samples[i],pvf.block(samples[i],n*3,1,3))
  63. c = VF.rowwiseNorm()
  64. C2 = igl.eigen.MatrixXd()
  65. igl.jet(c,1,1+rand_factor,C2)
  66. viewer.data.add_edges(B - global_scale*VF, B + global_scale*VF , C2)
  67. return False
  68. # Load a mesh in OBJ format
  69. igl.readOBJ("../tutorial/shared/lilium.obj", V, F)
  70. samples = readSamples("../tutorial/shared/lilium.samples.0.2")
  71. # Compute local basis for faces
  72. igl.local_basis(V,F,B1,B2,B3)
  73. # Compute face barycenters
  74. igl.barycenter(V, F, B)
  75. # Compute scale for visualizing fields
  76. global_scale = 0.2*igl.avg_edge_length(V, F)
  77. # Make the example deterministic
  78. random.seed(0)
  79. viewer = igl.viewer.Viewer()
  80. viewer.data.set_mesh(V, F)
  81. viewer.callback_key_down = key_down
  82. viewer.core.show_lines = False
  83. key_down(viewer,ord('2'),0)
  84. viewer.launch()