|
11 jaren geleden | |
---|---|---|
.. | ||
100_FileIO | 11 jaren geleden | |
102_DrawMesh | 11 jaren geleden | |
103_Events | 11 jaren geleden | |
104_Overlays | 11 jaren geleden | |
105_Colors | 11 jaren geleden | |
202_GaussianCurvature | 11 jaren geleden | |
cmake | 11 jaren geleden | |
images | 11 jaren geleden | |
shared | 11 jaren geleden | |
CMakeLists.shared | 11 jaren geleden | |
compile_example.sh | 11 jaren geleden | |
compile_macosx.sh | 11 jaren geleden | |
readme.md | 11 jaren geleden | |
style.css | 11 jaren geleden |
xhtml header: css: style.css
TODO
All examples depends on glfw, glew and anttweakbar. A copy of the sourcecode of each library is provided together with libigl and they can be precompiled using:
sh compile_macosx.sh (MACOSX)
sh compile_linux.sh (LINUX)
compile_windows.bat (Visual Studio 2012)
Every example can be compiled by using the cmake file provided in its folder. On Linux and MacOSX, you can use the provided bash script:
sh ../compile_example.sh
This chapter illustrates a few discrete quantities that libigl can compute on a mesh. This also provides an introduction to basic drawing and coloring routines in our example viewer. Finally, we construct popular discrete differential geometry operators.
Gaussian curvature on a continuous surface is defined as the product of the principal curvatures:
$k_G = k_1 k_2.$
As an intrinsic measure, it depends on the metric and not the surface's embedding.
Intuitively, Gaussian curvature tells how locally spherical or elliptic the surface is ( $k_G>0$ ), how locally saddle-shaped or hyperbolic the surface is ( $k_G<0$ ), or how locally cylindrical or parabolic ( $k_G=0$ ) the surface is.
In the discrete setting, one definition for a ``discrete Gaussian curvature'' on a triangle mesh is via a vertex's angular deficit:
$k_G(vi) = 2π - \sum\limits{j\in N(i)}θ_{ij},$
where $N(i)$ are the triangles incident on vertex $i$ and $θ_{ij}$ is the angle at vertex $i$ in triangle $j$.
Just like the continuous analog, our discrete Gaussian curvature reveals elliptic, hyperbolic and parabolic vertices on the domain.