minkowski_sum.cpp 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385
  1. // This file is part of libigl, a simple c++ geometry processing library.
  2. //
  3. // Copyright (C) 2016 Alec Jacobson <alecjacobson@gmail.com>
  4. //
  5. // This Source Code Form is subject to the terms of the Mozilla Public License
  6. // v. 2.0. If a copy of the MPL was not distributed with this file, You can
  7. // obtain one at http://mozilla.org/MPL/2.0/.
  8. #include "minkowski_sum.h"
  9. #include "mesh_boolean.h"
  10. #include "../../slice.h"
  11. #include "../../slice_mask.h"
  12. #include "../../LinSpaced.h"
  13. #include "../../unique.h"
  14. #include "../../get_seconds.h"
  15. #include "../../edges.h"
  16. #include <CGAL/Exact_predicates_exact_constructions_kernel.h>
  17. #include <cassert>
  18. #include <vector>
  19. template <
  20. typename DerivedVA,
  21. typename DerivedFA,
  22. typename DerivedVB,
  23. typename DerivedFB,
  24. typename DerivedW,
  25. typename DerivedG,
  26. typename DerivedJ>
  27. IGL_INLINE void igl::copyleft::cgal::minkowski_sum(
  28. const Eigen::MatrixBase<DerivedVA> & VA,
  29. const Eigen::MatrixBase<DerivedFA> & FA,
  30. const Eigen::MatrixBase<DerivedVB> & VB,
  31. const Eigen::MatrixBase<DerivedFB> & FB,
  32. const bool resolve_overlaps,
  33. Eigen::PlainObjectBase<DerivedW> & W,
  34. Eigen::PlainObjectBase<DerivedG> & G,
  35. Eigen::PlainObjectBase<DerivedJ> & J)
  36. {
  37. using namespace std;
  38. using namespace Eigen;
  39. assert(FA.cols() == 3 && "FA must contain a closed triangle mesh");
  40. assert(FB.cols() <= FA.cols() &&
  41. "FB must contain lower diemnsional simplices than FA");
  42. const auto tictoc = []()->double
  43. {
  44. static double t_start;
  45. double now = igl::get_seconds();
  46. double interval = now-t_start;
  47. t_start = now;
  48. return interval;
  49. };
  50. tictoc();
  51. Matrix<typename DerivedFB::Scalar,Dynamic,2> EB;
  52. edges(FB,EB);
  53. Matrix<typename DerivedFA::Scalar,Dynamic,2> EA(0,2);
  54. if(FB.cols() == 3)
  55. {
  56. edges(FA,EA);
  57. }
  58. // number of copies of A along edges of B
  59. const int n_ab = EB.rows();
  60. // number of copies of B along edges of A
  61. const int n_ba = EA.rows();
  62. vector<DerivedW> vW(n_ab + n_ba);
  63. vector<DerivedG> vG(n_ab + n_ba);
  64. vector<DerivedJ> vJ(n_ab + n_ba);
  65. vector<int> offsets(n_ab + n_ba + 1);
  66. offsets[0] = 0;
  67. // sweep A along edges of B
  68. for(int e = 0;e<n_ab;e++)
  69. {
  70. Matrix<typename DerivedJ::Scalar,Dynamic,1> eJ;
  71. minkowski_sum(
  72. VA,
  73. FA,
  74. VB.row(EB(e,0)).eval(),
  75. VB.row(EB(e,1)).eval(),
  76. false,
  77. vW[e],
  78. vG[e],
  79. eJ);
  80. assert(vG[e].rows() == eJ.rows());
  81. assert(eJ.cols() == 1);
  82. vJ[e].resize(vG[e].rows(),2);
  83. vJ[e].col(0) = eJ;
  84. vJ[e].col(1).setConstant(e);
  85. offsets[e+1] = offsets[e] + vW[e].rows();
  86. }
  87. // sweep B along edges of A
  88. for(int e = 0;e<n_ba;e++)
  89. {
  90. Matrix<typename DerivedJ::Scalar,Dynamic,1> eJ;
  91. const int ee = n_ab+e;
  92. minkowski_sum(
  93. VB,
  94. FB,
  95. VA.row(EA(e,0)).eval(),
  96. VA.row(EA(e,1)).eval(),
  97. false,
  98. vW[ee],
  99. vG[ee],
  100. eJ);
  101. vJ[ee].resize(vG[ee].rows(),2);
  102. vJ[ee].col(0) = eJ.array() + (FA.rows()+1);
  103. vJ[ee].col(1).setConstant(ee);
  104. }
  105. // Combine meshes
  106. int n=0,m=0;
  107. for_each(vW.begin(),vW.end(),[&n](const DerivedW & w){n+=w.rows();});
  108. for_each(vG.begin(),vG.end(),[&m](const DerivedG & g){m+=g.rows();});
  109. assert(n == offsets.back());
  110. W.resize(n,3);
  111. G.resize(m,3);
  112. J.resize(m,2);
  113. {
  114. int m_off = 0,n_off = 0;
  115. for(int i = 0;i<vG.size();i++)
  116. {
  117. W.block(n_off,0,vW[i].rows(),3) = vW[i];
  118. G.block(m_off,0,vG[i].rows(),3) = vG[i].array()+offsets[i];
  119. J.block(m_off,0,vJ[i].rows(),2) = vJ[i];
  120. n_off += vW[i].rows();
  121. m_off += vG[i].rows();
  122. }
  123. assert(n == n_off);
  124. assert(m == m_off);
  125. }
  126. if(resolve_overlaps)
  127. {
  128. Eigen::Matrix<typename DerivedJ::Scalar, Eigen::Dynamic,1> SJ;
  129. mesh_boolean(
  130. DerivedW(W),
  131. DerivedG(G),
  132. Matrix<typename DerivedW::Scalar,Dynamic,Dynamic>(),
  133. Matrix<typename DerivedG::Scalar,Dynamic,Dynamic>(),
  134. MESH_BOOLEAN_TYPE_UNION,
  135. W,
  136. G,
  137. SJ);
  138. J = slice(DerivedJ(J),SJ,1);
  139. }
  140. }
  141. template <
  142. typename DerivedVA,
  143. typename DerivedFA,
  144. typename sType, int sCols, int sOptions,
  145. typename dType, int dCols, int dOptions,
  146. typename DerivedW,
  147. typename DerivedG,
  148. typename DerivedJ>
  149. IGL_INLINE void igl::copyleft::cgal::minkowski_sum(
  150. const Eigen::MatrixBase<DerivedVA> & VA,
  151. const Eigen::MatrixBase<DerivedFA> & FA,
  152. const Eigen::Matrix<sType,1,sCols,sOptions> & s,
  153. const Eigen::Matrix<dType,1,dCols,dOptions> & d,
  154. const bool resolve_overlaps,
  155. Eigen::PlainObjectBase<DerivedW> & W,
  156. Eigen::PlainObjectBase<DerivedG> & G,
  157. Eigen::PlainObjectBase<DerivedJ> & J)
  158. {
  159. using namespace Eigen;
  160. using namespace std;
  161. assert(s.cols() == 3 && "s should be a 3d point");
  162. assert(d.cols() == 3 && "d should be a 3d point");
  163. // silly base case
  164. if(FA.size() == 0)
  165. {
  166. W.resize(0,3);
  167. G.resize(0,3);
  168. return;
  169. }
  170. const int dim = VA.cols();
  171. assert(dim == 3 && "dim must be 3D");
  172. assert(s.size() == 3 && "s must be 3D point");
  173. assert(d.size() == 3 && "d must be 3D point");
  174. // segment vector
  175. const CGAL::Vector_3<CGAL::Epeck> v(d(0)-s(0),d(1)-s(1),d(2)-s(2));
  176. // number of vertices
  177. const int n = VA.rows();
  178. // duplicate vertices at s and d, we'll remove unreferernced later
  179. W.resize(2*n,dim);
  180. for(int i = 0;i<n;i++)
  181. {
  182. for(int j = 0;j<dim;j++)
  183. {
  184. W (i,j) = VA(i,j) + s(j);
  185. W(i+n,j) = VA(i,j) + d(j);
  186. }
  187. }
  188. // number of faces
  189. const int m = FA.rows();
  190. //// Mask whether positive dot product, or negative: because of exactly zero,
  191. //// these are not necessarily complementary
  192. // Nevermind, actually P = !N
  193. Matrix<bool,Dynamic,1> P(m,1),N(m,1);
  194. // loop over faces
  195. int mp = 0,mn = 0;
  196. for(int f = 0;f<m;f++)
  197. {
  198. const CGAL::Plane_3<CGAL::Epeck> plane(
  199. CGAL::Point_3<CGAL::Epeck>(VA(FA(f,0),0),VA(FA(f,0),1),VA(FA(f,0),2)),
  200. CGAL::Point_3<CGAL::Epeck>(VA(FA(f,1),0),VA(FA(f,1),1),VA(FA(f,1),2)),
  201. CGAL::Point_3<CGAL::Epeck>(VA(FA(f,2),0),VA(FA(f,2),1),VA(FA(f,2),2)));
  202. const auto normal = plane.orthogonal_vector();
  203. const auto dt = normal * v;
  204. if(dt > 0)
  205. {
  206. P(f) = true;
  207. N(f) = false;
  208. mp++;
  209. }else
  210. //}else if(dt < 0)
  211. {
  212. P(f) = false;
  213. N(f) = true;
  214. mn++;
  215. //}else
  216. //{
  217. // P(f) = false;
  218. // N(f) = false;
  219. }
  220. }
  221. typedef Matrix<typename DerivedG::Scalar,Dynamic,Dynamic> MatrixXI;
  222. typedef Matrix<typename DerivedG::Scalar,Dynamic,1> VectorXI;
  223. MatrixXI GT(mp+mn,3);
  224. GT<< slice_mask(FA,N,1), slice_mask((FA.array()+n).eval(),P,1);
  225. // J indexes FA for parts at s and m+FA for parts at d
  226. J.derived() = igl::LinSpaced<DerivedJ >(m,0,m-1);
  227. DerivedJ JT(mp+mn);
  228. JT << slice_mask(J,P,1), slice_mask(J,N,1);
  229. JT.block(mp,0,mn,1).array()+=m;
  230. // Original non-co-planar faces with positively oriented reversed
  231. MatrixXI BA(mp+mn,3);
  232. BA << slice_mask(FA,P,1).rowwise().reverse(), slice_mask(FA,N,1);
  233. // Quads along **all** sides
  234. MatrixXI GQ((mp+mn)*3,4);
  235. GQ<<
  236. BA.col(1), BA.col(0), BA.col(0).array()+n, BA.col(1).array()+n,
  237. BA.col(2), BA.col(1), BA.col(1).array()+n, BA.col(2).array()+n,
  238. BA.col(0), BA.col(2), BA.col(2).array()+n, BA.col(0).array()+n;
  239. MatrixXI uGQ;
  240. VectorXI S,sI,sJ;
  241. //const auto & total_signed_distance =
  242. [](
  243. const MatrixXI & F,
  244. VectorXI & S,
  245. MatrixXI & uF,
  246. VectorXI & I,
  247. VectorXI & J)
  248. {
  249. const int m = F.rows();
  250. const int d = F.cols();
  251. MatrixXI sF = F;
  252. const auto MN = sF.rowwise().minCoeff().eval();
  253. // rotate until smallest index is first
  254. for(int p = 0;p<d;p++)
  255. {
  256. for(int f = 0;f<m;f++)
  257. {
  258. if(sF(f,0) != MN(f))
  259. {
  260. for(int r = 0;r<d-1;r++)
  261. {
  262. std::swap(sF(f,r),sF(f,r+1));
  263. }
  264. }
  265. }
  266. }
  267. // swap orienation
  268. for(int f = 0;f<m;f++)
  269. {
  270. if(sF(f,d-1) < sF(f,1))
  271. {
  272. sF.block(f,1,1,d-1) = sF.block(f,1,1,d-1).reverse().eval();
  273. }
  274. }
  275. Matrix<bool,Dynamic,1> M = Matrix<bool,Dynamic,1>::Zero(m,1);
  276. {
  277. VectorXI P = igl::LinSpaced<VectorXI >(d,0,d-1);
  278. for(int p = 0;p<d;p++)
  279. {
  280. for(int f = 0;f<m;f++)
  281. {
  282. bool all = true;
  283. for(int r = 0;r<d;r++)
  284. {
  285. all = all && (sF(f,P(r)) == F(f,r));
  286. }
  287. M(f) = M(f) || all;
  288. }
  289. for(int r = 0;r<d-1;r++)
  290. {
  291. std::swap(P(r),P(r+1));
  292. }
  293. }
  294. }
  295. unique_rows(sF,uF,I,J);
  296. S = VectorXI::Zero(uF.rows(),1);
  297. assert(m == J.rows());
  298. for(int f = 0;f<m;f++)
  299. {
  300. S(J(f)) += M(f) ? 1 : -1;
  301. }
  302. }(MatrixXI(GQ),S,uGQ,sI,sJ);
  303. assert(S.rows() == uGQ.rows());
  304. const int nq = (S.array().abs()==2).count();
  305. GQ.resize(nq,4);
  306. {
  307. int k = 0;
  308. for(int q = 0;q<uGQ.rows();q++)
  309. {
  310. switch(S(q))
  311. {
  312. case -2:
  313. GQ.row(k++) = uGQ.row(q).reverse().eval();
  314. break;
  315. case 2:
  316. GQ.row(k++) = uGQ.row(q);
  317. break;
  318. default:
  319. // do not add
  320. break;
  321. }
  322. }
  323. assert(nq == k);
  324. }
  325. G.resize(GT.rows()+2*GQ.rows(),3);
  326. G<<
  327. GT,
  328. GQ.col(0), GQ.col(1), GQ.col(2),
  329. GQ.col(0), GQ.col(2), GQ.col(3);
  330. J.resize(JT.rows()+2*GQ.rows(),1);
  331. J<<JT,DerivedJ::Constant(2*GQ.rows(),1,2*m+1);
  332. if(resolve_overlaps)
  333. {
  334. Eigen::Matrix<typename DerivedJ::Scalar, Eigen::Dynamic,1> SJ;
  335. mesh_boolean(
  336. DerivedW(W),DerivedG(G),
  337. Matrix<typename DerivedVA::Scalar,Dynamic,Dynamic>(),MatrixXI(),
  338. MESH_BOOLEAN_TYPE_UNION,
  339. W,G,SJ);
  340. J.derived() = slice(DerivedJ(J),SJ,1);
  341. }
  342. }
  343. template <
  344. typename DerivedVA,
  345. typename DerivedFA,
  346. typename sType, int sCols, int sOptions,
  347. typename dType, int dCols, int dOptions,
  348. typename DerivedW,
  349. typename DerivedG,
  350. typename DerivedJ>
  351. IGL_INLINE void igl::copyleft::cgal::minkowski_sum(
  352. const Eigen::MatrixBase<DerivedVA> & VA,
  353. const Eigen::MatrixBase<DerivedFA> & FA,
  354. const Eigen::Matrix<sType,1,sCols,sOptions> & s,
  355. const Eigen::Matrix<dType,1,dCols,dOptions> & d,
  356. Eigen::PlainObjectBase<DerivedW> & W,
  357. Eigen::PlainObjectBase<DerivedG> & G,
  358. Eigen::PlainObjectBase<DerivedJ> & J)
  359. {
  360. return minkowski_sum(VA,FA,s,d,true,W,G,J);
  361. }
  362. #ifdef IGL_STATIC_LIBRARY
  363. // Explicit template instantiation
  364. // generated by autoexplicit.sh
  365. template void igl::copyleft::cgal::minkowski_sum<
  366. Eigen::Matrix<float, -1, 3, 1, -1, 3>,
  367. Eigen::Matrix<int, -1, 3, 1, -1, 3>,
  368. double, 3, 1,
  369. float, 3, 1,
  370. Eigen::Matrix<CGAL::Lazy_exact_nt<CGAL::Gmpq>, -1, -1, 1, -1, -1>,
  371. Eigen::Matrix<int, -1, -1, 0, -1, -1>,
  372. Eigen::Matrix<int, -1, 1, 0, -1, 1> >(Eigen::MatrixBase<Eigen::Matrix<float, -1, 3, 1, -1, 3> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 3, 1, -1, 3> > const&, Eigen::Matrix<double, 1, 3, 1, 1, 3> const&, Eigen::Matrix<float, 1, 3, 1, 1, 3> const&, bool, Eigen::PlainObjectBase<Eigen::Matrix<CGAL::Lazy_exact_nt<CGAL::Gmpq>, -1, -1, 1, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> >&);
  373. #endif